Single-epoch Measurement Algorithms

Robert Lupton
Applications Lead

2013-09-19
Outline

Single-epoch Measurement Algorithms

Coaddition: Detection, Association, and Deblending
Background Estimation

- One of the unsolved issues in image processing
- Goal: measure the \textbf{mean} flux of all non-detected objects
- Danger: subtracting power from the wings of extended objects
Background Matching for Coadds

Proposal: estimate the *difference* between successive (dithered) exposures.

- This means that the real objects subtract out, leaving
 - Changes in the sky
 - Ghosts
 - Glints

- One realisation of the sky survives, but we can subtract this at high S/N
source detection

Convolve with a spatial filter: convert an picture to a likelihood image

\emph{n.b.} a single pixel is significant – remember to grow by the size of the spatial filter.
source detection

Convolve with a spatial filter: convert an picture to a likelihood image

n.b. a single pixel is significant – remember to grow by the size of the spatial filter.

Discussion of choice of spatial filters (will use PSF + extended templates (e.g. 2xPSF)).
source detection

Convolve with a spatial filter: convert an picture to a likelihood image

n.b. a single pixel is significant – remember to grow by the size of the spatial filter.

Discussion of choice of spatial filters (will use PSF + extended templates (e.g. 2xPSF?). Detection in difference images will be similar, but allowing for trailing.
Accounting for detector characteristics

- We’ll correct for all standard effects (\textit{e.g.} nonlinearity)
- Deep depletion devices have their own foibles:
 - Those due to the Si (\textit{e.g.} tree-rings, anti-bleed stops)
 - Those due to charge in pixels (\textit{e.g.} pixel correlations, intensity-dependent PSFS)
PSF estimation

- Current state-of-the-art is to use some basis functions (e.g. PCA) and a spatial model (e.g. polynomials).
 Details vary (oversampling; colour dependence)
- Jarvis and Jain modelled the eigen-components of Blanco’s optics/tracking
- EUCLID’s using wavefront reconstruction from images
 RHL: check what Miller did in CFHTLens.
- PSF model is implemented as a plugin; options currently include pcaPsf, psfexPsf, stackfitPsf
- LSST plans to estimate the telescope part from the wavefront sensors, and estimate the atmospheric part using e.g. PCA + Kriging
- We will estimate the zero-intensity PSF
Astrometry

– MLE PSF estimates for stars, and more extended object models for larger sources.
– Will handle trailing
– We are aware of the mapping from the pixel grid to focal plane mm

\textit{N.b.} final centroids (and motions/parallax) come from multifit
Photometry

- Stars
- Galaxies
 - PSF-convolved models
 - Elliptical apertures
 - Kron/Petrosian
 - No isophotal!
Outline

Single-epoch Measurement Algorithms

Coaddition: Detection, Association, and Deblending
How should I Coadd?

Let us consider the limit where the per-pixel noise is the same within each exposure (i.e. we’re only paying attention to objects where the sky noise dominates).
How should I Coadd?

Let us consider the limit where the per-pixel noise is the same within each exposure (i.e. we’re only paying attention to objects where the sky noise dominates).

One way to think about the PSF is as a filter that suppresses high-frequency power. As Kaiser pointed out, if different exposures have different PSFs, then different Fourier modes have different signal-to-noise ratios.
How should I Coadd?

Let us consider the limit where the per-pixel noise is the same within each exposure (i.e. we’re only paying attention to objects where the sky noise dominates).

One way to think about the PSF is as a filter that suppresses high-frequency power. As Kaiser pointed out, if different exposures have different PSFs, then different Fourier modes have different signal-to-noise ratios. Hence we need to weight each mode differently, more precisely you should convolve 1 each image with its PSF before you add them together. You also need to remember the sum of the PSF convolved with itself.

1actually correlate
How should I Coadd?

Let us consider the limit where the per-pixel noise is the same within each exposure (i.e. we’re only paying attention to objects where the sky noise dominates).

One way to think about the PSF is as a filter that suppresses high-frequency power. As Kaiser pointed out, if different exposures have different PSFs, then different Fourier modes have different signal-to-noise ratios. Hence we need to weight each mode differently, more precisely you should convolve each image with its PSF before you add them together. You also need to remember the sum of the PSF convolved with itself. This isn’t what people usually do in practice. Please forget (for now) about the possibility of kernel convolution while coadding.
Should I Coadd?

In theory you never need to add images, but it can be convenient.
Should I Coadd?

In theory you never need to add images, but it can be convenient.
- If all frames are equivalent, the coadd has all the information in the input frames

N.b. this assumes per-pixel weighting.

- If all frames have the same seeing, it's usually OK to use the coadd
 The exception is things that move or vary:
 - Cosmic rays and other defects
 - Stars that move (nearby and/or fast moving)
- If the seeing varies, the coadd is never optimal
 … but it may not matter much
 Some things are OK:
 - Detection of extended objects
 - Background estimation (if using background matching)
 Some things are not:
 - Unrecognised cosmic rays and moving objects
 - Optimal photometry and shapes
 - How much we lose by working on a coadd is a numerical question
Should I Coadd?

In theory you never need to add images, but it can be convenient.

– If all frames are equivalent, the coadd has all the information in the input frames

N.b. this assumes per-pixel weighting.

… but it may not matter much

Some things are OK:

- Detection of extended objects
- Background estimation (if using background matching)

Some things are not:

- Unrecognised cosmic rays and moving objects
- Optimal photometry and shapes

How much we lose by working on a coadd is a numerical question
Should I Coadd?

In theory you never need to add images, but it can be convenient.
- If all frames are equivalent, the coadd has all the information in the input frames
 \[N.b.\] this assumes per-pixel weighting.
- If all frames have the same seeing, it’s usually OK to use the coadd
Should I Coadd?

In theory you never need to add images, but it can be convenient.

– If all frames are equivalent, the coadd has all the information in the input frames

 N.b. this assumes per-pixel weighting.

– If all frames have the same seeing, it’s usually OK to use the coadd

 The exception is things that move or vary:

 – Cosmic rays and other defects

 – Stars that move (nearby and/or fast moving)

– If the seeing varies, the coadd is never optimal
Should I Coadd?

In theory you never need to add images, but it can be convenient.

- If all frames are equivalent, the coadd has all the information in the input frames

 N.b. this assumes per-pixel weighting.

- If all frames have the same seeing, it’s usually OK to use the coadd

 The exception is things that move or vary:

 - Cosmic rays and other defects
 - Stars that move (nearby and/or fast moving)

- If the seeing varies, the coadd is never optimal ... but it may not matter much

Some things are OK:

- Detection of extended objects
- Background estimation (if using background matching)
Should I Coadd?

In theory you never need to add images, but it can be convenient.

– If all frames are equivalent, the coadd has all the information in the input frames

\textit{N.b.} this assumes per-pixel weighting.

– If all frames have the same seeing, it’s usually OK to use the coadd

The exception is things that move or vary:

\begin{itemize}
 \item Cosmic rays and other defects
 \item Stars that move (nearby and/or fast moving)
\end{itemize}

– If the seeing varies, the coadd is never optimal … but it may not matter much

Some things are OK:

\begin{itemize}
 \item Detection of extended objects
 \item Background estimation (if using background matching)
\end{itemize}

Some things are not:

\begin{itemize}
 \item Unrecognised cosmic rays and moving objects
 \item Optimal photometry and shapes
\end{itemize}
Should I Coadd?

In theory you never need to add images, but it can be convenient.

- If all frames are equivalent, the coadd has all the information in the input frames

 N.b. this assumes per-pixel weighting.

- If all frames have the same seeing, it’s usually OK to use the coadd

The exception is things that move or vary:

 * Cosmic rays and other defects
 * Stars that move (nearby and/or fast moving)

- If the seeing varies, the coadd is never optimal … but it may not matter much

Some things are OK:

 * Detection of extended objects
 * Background estimation (if using background matching)

Some things are not:

 * Unrecognised cosmic rays and moving objects
 * Optimal photometry and shapes

- How much we lose by working on a coadd is a numerical question
Should I Coadd?

I think that the answer’s yes — let’s be pragmatic.
Should I Coadd?

I think that the answer’s yes — let’s be pragmatic. But maybe only as a step in the processing.

What are coadds good for?
Should I Coadd?

I think that the answer’s yes — let’s be pragmatic. But maybe only as a step in the processing.

What are coadds good for?

– Detecting on a coadd is almost certainly OK (for stationary object)
Should I Coadd?

I think that the answer’s yes — let’s be pragmatic. But maybe only as a step in the processing.

What are coadds good for?

– Detecting on a coadd is almost certainly OK (for stationary object)
– Deblending on a coadd is probably a smart choice
Should I Coadd?

I think that the answer’s yes — let’s be pragmatic. But maybe only as a step in the processing.

What are coadds good for?

- Detecting on a coadd is almost certainly OK (for stationary object)
- Deblending on a coadd is probably a smart choice
- Coadds are good for studying anything large or low-surface brightness
Detection on Multi-Epoch Multi-Band Data
Single Band:

Detection on a coadd is basically the same as on a single image, with the added complexities that:

- the noise is correlated
- the psf (and thus the map from image to likelihood) may be strongly spatially variable

Multiple band:

- given an SED convolve in space and filter
- given no information about the SED you recover a χ^2 detection
- proposal: detect in each band separately and χ^2 to e.g. 4.5σ, merge, and cut at e.g. 5.5σ with your favourite SEDs

RHL: shall I include the mathematics here?
Source Association

Tricky. You need to handle astrometric errors and generate a believable list of Peaks within each source.
Deblending

The proposal is to run an SDSS-style deblend on the coadd. We will then propagate the outputs to the individual frames in a way TBD.
Deblending

The proposal is to run an SDSS-style deblend on the coadd. We will then propagate the outputs to the individual frames in a way TBD. For example, we could fit a reasonably flexible model (PSF-convolved Gaussian-mixtures?) to the children from the deblend. Then use these models as SDSS-templates to the individual epochs.
Kinds of Coadds
Colour Measurements Designed to Enable Photo-zs

- Constant Seeing in all Bands
 - If the seeing's fixed you can use any model you like.
 - Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)
 - We'll be calculating models anyway.
 - There's nothing magic about the total light; you can choose the model to maximise the S/N in the photo-z — e.g. overweight the bulge.

- Variable Seeing
 - You (we) can homogenize the seeing, but at some cost
 - If your models are flexible enough to measure a total flux, the seeing doesn't matter (remember that they are PSF convolved)
 - In practice, this probably means allowing the Sérsic index or B/D ratio to float, but not other structural parameters
Colour Measurements Designed to Enable Photo-zs

- Constant Seeing in all Bands
 If the seeing’s fixed you can use any model you like.

Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)

We’ll be calculating models anyway. There’s nothing magic about the total light; you can choose the model to maximise the S/N in the photo-z — e.g. overweight the bulge.

N.b. we’re recovering the SED of a population at the true redshift, but not the SED.

Variable Seeing

You (we) can homogenize the seeing, but at some cost.

If your models are flexible enough to measure a total flux, the seeing doesn’t matter (remember that they are PSF convolved).

In practice, this probably means allowing the Sérsic index or B/D ratio to float, but not other structural parameters.
Colour Measurements Designed to Enable Photo-zs

- Constant Seeing in all Bands
 If the seeing’s fixed you can use any model you like.
 - Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)
Colour Measurements Designed to Enable Photo-zs

- Constant Seeing in all Bands
 If the seeing’s fixed you can use any model you like.
 - Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)
 - We’ll be calculating models anyway.

N.b. we’re recovering the SED of a population at the true redshift, but not the SED.
Colour Measurements Designed to Enable Photo-zs

- Constant Seeing in all Bands
 If the seeing’s fixed you can use any model you like.
 - Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)
 - We’ll be calculating models anyway.
 - There’s nothing magic about the total light; you can choose the model to maximise the S/N in the photo-z — e.g. overweight the bulge.
Colour Measurements Designed toEnable Photo-zs

- Constant Seeing in all Bands
 If the seeing’s fixed you can use any model you like.
 - Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)
 - We’ll be calculating models anyway.
 - There’s nothing magic about the total light; you can choose the model to maximise the S/N in the photo-z — e.g. overweight the bulge. *N.b. we’re recovering the SED of a population at the true redshift, but not the SED.*
Colour Measurements Designed to Enable Photo-zs

- Constant Seeing in all Bands
 If the seeing’s fixed you can use any model you like.
 - Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)
 - We’ll be calculating models anyway.
 - There’s nothing magic about the total light; you can choose the model to maximise the S/N *in the* photo-z — e.g. overweight the bulge. *N.b.* we’re recovering the SED of a population at the true redshift, but not the SED.

- Variable Seeing
Colour Measurements Designed to Enable Photo-zs

- **Constant Seeing in all Bands**

 If the seeing’s fixed you can use any model you like.
 - Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)
 - We’ll be calculating models anyway.
 - There’s nothing magic about the total light; you can choose the model to maximise the S/N in the photo-z — e.g. overweight the bulge. *N.b.* we’re recovering the SED of a population at the true redshift, but not the SED.

- **Variable Seeing**

 - You (we) can homogenize the seeing, but at some cost
Colour Measurements Designed to Enable Photo-zs

- Constant Seeing in all Bands
 If the seeing’s fixed you can use any model you like.
 - Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)
 - We’ll be calculating models anyway.
 - There’s nothing magic about the total light; you can choose the model to maximise the S/N in the photo-z — e.g. overweight the bulge. *N.b.* we’re recovering the SED of a population at the true redshift, but not the SED.

- Variable Seeing
 - You (we) can homogenize the seeing, but at some cost
 - If your models are flexible enough to measure a total flux, the seeing doesn’t matter (remember that they are PSF convolved)
Colour Measurements Designed to Enable Photo-zs

– Constant Seeing in all Bands
 If the seeing’s fixed you can use any model you like.
 • Simple apertures waste S/N (about 11% for a Gaussian profile and an optimal aperture of 0.67 FHWM)
 • We’ll be calculating models anyway.
 • There’s nothing magic about the total light; you can choose the model to maximise the S/N in the photo-z — e.g. overweight the bulge. *N.b. we’re recovering the SED of a population at the true redshift, but not the SED.*

– Variable Seeing
 • You (we) can homogenize the seeing, but at some cost
 • If your models are flexible enough to measure a total flux, the seeing doesn’t matter (remember that they are PSF convolved)
 • In practice, this probably means allowing the Sérsic index or B/D ratio to float, but not other structural parameters
Colour Measurements Designed to Enable
Photo-zs

An open question is the trade between PSF homogenisation and more complex models — which maximises photo-z accuracy?
Colour Measurements Designed to Enable Photo-zs

An open question is the trade between PSF homogenisation and more complex models — which maximises photo-z accuracy? Or other metrics of interest to other groups.
Colour Measurements Designed to Enable Photo-zs

An open question is the trade between PSF homogenisation and more complex models — which maximises photo-z accuracy? Or other metrics of interest to other groups.

I think that this is place where my open architecture will be very valuable.
Colour Measurements Designed to Enable Photo-zs

An open question is the trade between PSF homogenisation and more complex models — which maximises photo-z accuracy? Or other metrics of interest to other groups.

I think that this is place where my open architecture will be very valuable. But it’s going to be a lot of work...