Probabilistic Catalogs for Crowded Stellar Fields

Brendon J. Brewer

Department of Statistics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Daniel Foreman-Mackey

Center for Cosmology and Particle Physics, Department of Physics, New York University, Washington Place, New York, NY, 10003, USA

and

David W. Hogg

Center for Cosmology and Particle Physics, Department of Physics, New York University, Washington Place, New York, NY, 10003, USA

ABSTRACT

We introduce a probabilistic (Bayesian) method for producing catalogs from images of crowded stellar fields. The method is capable of inferring the number of sources N in the image and can also handle the challenges introduced by overlapping sources. The luminosity function of the stars can also be inferred even when the precise luminosity of each star is uncertain. This is in contrast with standard techniques which produce a single catalog, potentially underestimating the uncertainties in any study of the stellar population and discarding information about sources at or below the detection limit. The method is implemented using advanced Markov Chain Monte Carlo (MCMC) techniques including Reversible Jump and Nested Sampling. The computational feasibility of the method is demonstrated on simulated data where the luminosity function of the stars is a broken power-law. The parameters of the luminosity function can be recovered with moderate uncertainties. We compare the results obtained from our method with those obtained from the SExtractor software and find that the latter significantly underestimates the number of stars in the image and leads to incorrect inferences about the luminosity function of the stars.

Subject headings: catalogs — methods: data analysis — methods: statistical — stars: luminosity function, mass function

bj.brewer@auckland.ac.nz
1. Introduction

Traditional practice in astronomy is to take images of the sky, detect or enumerate sources visible in those images, and create catalogs. These catalogs are then used to perform the fundamental astronomical measurements, which might include something like the three-dimensional structure of the Galaxy or the two-point correlation function of galaxies. Indeed, the process of catalog construction is so “baked in” to our ideas about what astronomy is, we sometimes forget that the catalog is not the fundamental data product of astronomy; catalogs are produced from imaging; their production involves many decisions and ideas that go way beyond the information provided to the telescope by the incident intensity field. In addition, catalogs are not usually the final goal of any imaging project or survey. Typically, they are produced in order to facilitate the scientific study of populations of objects (e.g. the initial mass function of a population of stars), or to provide a sky-search capability to the community who might be interested in only a small subset of objects. Standard tools for generating catalogs from astronomical imaging include SExtractor (Bertin and Arnouts 1996), DAOPHOT (Stetson 1987), and SDSS PHOTO (Lupton et al. 2001).

Telescopes don’t make catalogs (Hogg and Lang 2011), they measure the intensity field. Viewed through the lens of probabilistic inference, the goals of astronomy are to take the information in the telescope-generated records of the intensity field and deliver it to the quantities of astronomical interest with as little loss as possible. Insertion of a catalog-generation step in the inference pipeline between the raw imaging and the final astrophysical analyses is typically very lossy; the hard decisions of catalog making destroy information. Probability theory suggests that it will be much less lossy to pass forward not a catalog but a probabilistic description of all the catalogs that could be consistent with the imaging—a posterior probability in (enormously large) catalog space. This article represents an attempt at this ambitious goal in the specific situation where the only objects in the field are stars.

Beyond these extremely general concerns, there are practical issues: Standard methods for constructing catalogs can have difficulty in some challenging situations. For example, when multiple sources overlap partially or completely, it can be difficult to determine how many sources are present, and how much flux belongs to each source. In principle, uncertainty should be taken into account. Instead of simply estimating the position and flux of each object in the image, we should fully describe the fact that sometimes we are not certain of the position and flux of each source. This uncertainty should then be propagated into any inferences about the stellar population.

Essentially, the creation of a catalog is an attempt to answer the question, “Given the image we have obtained, what objects are present in the field and what are their properties?” This motivates a probabilistic (Bayesian) approach to making catalogs. The output of such
an approach would not be a single answer to this question (i.e. a single “point estimate” catalog), but rather a posterior probability distribution over the space of possible catalogs. Numerically, Bayesian Inference is often implemented using Markov Chain Monte Carlo (MCMC) algorithms in order to generate random samples from the posterior distribution.

Sampling a posterior probability distribution for catalogs is likely to be challenging for a number of reasons. Firstly, the number N of objects in the image (and that should therefore be listed in the catalog) is itself unknown. Secondly, if N is large, then the parameter space of positions and properties (flux, size, etc) of the objects is also large. This can cause Markov Chain Monte Carlo (MCMC) algorithms difficulties – they may take a long time to converge to the target posterior distribution over the space of catalogs. Thirdly, this problem is subject to the so-called label-switching problem that is commonly encountered in mixture modeling (e.g. Jasra et al. 2005). Given any proposed catalog, another catalog that is equally plausible is the catalog obtained by shuffling the entries of the first catalog. This leads to a posterior distribution with $N!$ identical peaks in parameter space. This can lead to difficulties with certain (generally very effective) MCMC algorithms such as the affine-invariant stretch move (Goodman & Weare 2010; Foreman-Mackey et al. 2012).

Bayesian object detection (as this problem is sometimes called) has been implemented both inside and outside of astronomy (e.g. Harkness and Green 2000; Feroz et al. 2011). However, the Feroz et al. (2011) approach makes the assumption of a known number of objects N. This assumption is required for the MultiNest sampler (Feroz, Hobson, & Bridges 2009) to be applicable. Using the results from the known N run, it is possible (under certain circumstances) to reconstruct what the results would have been if an unknown-N model had been used. However, this will not work well in situations where there is significant confusion (i.e. two or more sources overlap). What is really required is a variable dimension model, where $N \in \{0, 1, 2, \ldots\}$ is an unknown quantity to be inferred from the data. The computational implementation of these models will require tools such as reversible jump Markov Chain Monte Carlo (Green 1995). Other statistical methods have also been used to model crowded fields (e.g. maximum likelihood, Irwin 1985). However, maximum likelihood is not completely appropriate in flexible models because it may lead to overfitting. In this situation overfitting would result in more stars being added to the model to explain small positive fluctuations in the image which are actually due to noise. Various other techniques have also been proposed in the literature (e.g. Metchev & Grindlay 2002; Magain et al. 2007; Zhang et al. 2009).
2. Bayesian Inference

To quantitatively model uncertainties and transform noise in observed data into uncertainties in parameters of interest, Bayesian Inference is the appropriate framework \cite{Cox1946, Jaynes2003, Caticha2009, Mackay2003}. Suppose there exist unknown parameters (denoted collectively by θ) and we expect to obtain some data x. Our prior state of knowledge about the parameters is modelled by a prior probability distribution:

$$p(\theta).$$ \hfill (1)

Note that this is a very concise notation \cite{Hogg2012} and should be read as “the probability distribution for θ”. We also model how the parameters give rise to the data, via a generative model. This is also known as a sampling distribution:

$$p(x|\theta).$$ \hfill (2)

Despite the singular, the sampling distribution is actually a family of probability distributions over the space of possible data sets, one probability distribution for each possible value of θ. Note that the choice of the sampling distribution is also an assumption about prior knowledge: It models prior information about the fact that the data x is connected to the parameters θ in some way. Without this prior knowledge, learning is impossible: there has to be some relationship between the parameters and the data, otherwise new data tells you about nothing but itself.

When specific data x^* have been obtained, our state of knowledge about θ gets updated from the prior distribution to the posterior distribution via Bayes’ rule:

$$p(\theta|x = x^*) \propto p(\theta)p(x|\theta)|_{x = x^*}$$

$$= p(\theta)\mathcal{L}(\theta; x)$$ \hfill (3)

The term $p(x|\theta)|_{x = x^*} = \mathcal{L}(\theta; x)$ is the likelihood function, which is the probability of obtaining the actual data set x^* as a function of the parameters. In the case that the sampling distribution is a probability density, the likelihood is the probability density function evaluated at the observed data. This usually causes no problems, although one should be aware of the Borel-Kolmogorov paradox \cite{Jaynes2003}. As suggested by the above notation, the likelihood function is obtained from the sampling distribution with the actual data substituted in and is therefore a function of the parameters only.

To proceed with the model for inferring catalogs (stellar positions and fluxes) from image data, we must specify a definite hypothesis space and choices for the prior distribution and the sampling distribution. These choices are presented and discussed in Section 3 in Section 4.
we briefly discuss our MCMC implementation. Section 5 describes the tests we carried out on simulated data, and a comparison with SExtractor results is presented in Section 6. We conclude in Section 7.

3. The Specific Model for Stellar Fields

3.1. The Hypothesis Space

The hypothesis space is the set of possible catalogs, or the set of possible answers to the question, “What objects are present in the field and what are their properties?” We shall assume that there are an unknown number of stars N in the field. Each star has an unknown position (x, y) in the plane of the sky, and an unknown flux f. We also describe the distribution of fluxes (commonly known as the luminosity function) of the stars by some parameters denoted collectively by β. In summary, the unknown parameters are:

$$\theta = \{N, \beta, \{x_i, y_i\}_{i=1}^N, \{f_i\}_{i=1}^N\}.$$ \hfill (5)

We note that models similar to this have been implemented for general image modeling and deconvolution (e.g. Skilling 1998), however in this case it is more justified as we are actually searching for point fluxes.

3.2. The Prior

The prior probability distribution for the unknown parameters can be factorized using the product rule of probability theory. With a variety of independence assumptions, the prior can be factorized as:

$$p(\theta) = p(\beta)p(N|\beta)\prod_{i=1}^{N} p(x_i, y_i)p(f_i|\beta)$$ \hfill (6)

Here, we have assumed that the luminosity function does not depend on position. Finally, the fluxes of the stars come independently from a common distribution. If we knew the luminosity function of the stars, then the location and flux of a particular star would not tell us anything about the location and flux of another star. Really, this is just a way of implementing exchangeability of the stars.

For simplicity, we assume a uniform prior probability distribution for the position of each star. This creates a strong preference for catalogs where the stars are uniformly distributed.
across the image. Thus, this model is appropriate for small patches of sky where the density of stars is approximately uniform. In other scenarios, such as images of stellar clusters, it is possible to parameterize the spatial distribution of the stars in a similar way to how we have parameterized the luminosity function.

3.3. The Sampling Distribution

The sampling distribution is a probabilistic model for the process that generates the data; it describes the probability distribution we would use to predict the data if we happened to know the true catalog. In our case, the data will be an $m \times n$ array of pixel intensities I:

$$\{I_{ij}\}$$

where the central position of each pixel is:

$$\{X_{ij}, Y_{ij}\}.$$ \hspace{1cm} (7)

The image is assumed to be a noisy version of the true underlying intensity field. Thus, we need a prescription for simulating an image $\{I_{ij}\}$ from a catalog θ:

$$\theta = \left\{ N, \beta, \{x_i, y_i\}_{i=1}^{N}, \{f_i\}_{i=1}^{N} \right\}.$$ \hspace{1cm} (8)

If we knew the true catalog, we could compute the “mock image” we would expect to see in the absence of noise. This mock image (defined at every point on the sky) is given by:

$$M(x, y) = \sum_{i=1}^{N} f_i P(x - x_i, y - y_i)$$

where P is the pixel-convolved point spread function (PSF). Throughout this paper we will assume the pixel-convolved PSF is a weighted mixture of two concentric circular Gaussians with widths s_1 and s_2:

$$P(x, y) = \frac{w}{2\pi s_1^2} \exp \left[-\frac{1}{2s_1^2} (x^2 + y^2) \right] + \frac{1-w}{2\pi s_2^2} \exp \left[-\frac{1}{2s_2^2} (x^2 + y^2) \right].$$ \hspace{1cm} (9)

The pixellated observed image is assumed to be generated from the mock image (evaluated at the center of each pixel) plus noise:

$$I_{ij} = M(X_{ij}, Y_{ij}) + \epsilon_{ij}$$

where ϵ_{ij} is the noise term.
where the errors \(\{ \epsilon_{ij} \} \) are independent and normally distributed. The variance of each pixel is determined by the brightness of the sky and the brightness of the mock image in that pixel:

\[
\epsilon_{ij} \sim \mathcal{N}(0, \sigma_0^2 + \eta I_{ij}).
\]

(13)

where \(\sigma_0 \) is a constant noise level and \(\eta \) is a coefficient allowing the noise to be higher in brighter regions of the image. This parameterisation has been used by Brewer et al. (2011) and is an alternative to the common practice of producing a “variance map” from the image data that is then assumed to be known.

3.4. The Prior Distribution

The prior distribution for the number of stars \(N \) is assigned to be uniform between 0 and some maximum number \(N_{\text{max}} \). The extent of the image is assumed to be from \(x = x_{\text{min}} \) to \(x = x_{\text{max}} = x_{\text{min}} + x_{\text{range}} \) and from \(y = y_{\text{min}} \) to \(y = y_{\text{max}} = y_{\text{min}} + y_{\text{range}} \) in arbitrary units, and the positions of the stars are assigned independent uniform priors:

\[
x_i \sim \text{Uniform}(x_{\text{min}} - 0.05x_{\text{range}}, x_{\text{max}} + 0.05x_{\text{range}})
\]

(14)

\[
y_i \sim \text{Uniform}(y_{\text{min}} - 0.05y_{\text{range}}, y_{\text{max}} + 0.05y_{\text{range}})
\]

(15)

The stars are allowed to be slightly outside of the observed image because the PSF can scatter light from these stars into the image. Our model for the luminosity function is a broken power-law with four free parameters:

\[
\beta = \{ h_1, h_2, \alpha_1, \alpha_2 \}.
\]

(16)

where \(h_1 \) is a lower flux limit, \(h_2 \) is a break-point, \(\alpha_1 \) is the slope of the distribution between \(h_1 \) and \(h_2 \), and \(\alpha_2 \) is the slope of the distribution above \(h_2 \). For details on the broken power-law model, see Appendix A. The prior distribution on \(h_1, h_2, \alpha_1, \) and \(\alpha_2 \) is assigned to be:

\[
\ln h_1 \sim \text{Uniform}(\ln(10^{-3}), \ln(10^3))
\]

(17)

\[
\ln h_2 \sim \text{Uniform}(\ln(h_1), \ln(h_1) + 2.3)
\]

(18)

\[
\alpha_1 \sim \text{Uniform}(1, 5)
\]

(19)

\[
\alpha_2 \sim \text{Uniform}(1, 5).
\]

(20)

These priors express vague prior knowledge about \(\alpha_1 \) and \(\alpha_2 \) in addition to vague prior knowledge about \(h_1 \) and \(h_2 \) apart from the fact that the flux units are not extreme and that \(h_2 \) should be no more than an order of magnitude greater than \(h_1 \).
This simply-parameterized model for the luminosity function can be criticized on the basis that information from bright stars can be used to infer the parameters of the luminosity function which then still apply at lower flux levels. In principle, this can be resolved by using a more flexible distribution (e.g. Kelly et al. 2008) where each star’s measured brightness affects the inference of the luminosity function locally but not globally.

The priors for the PSF parameters and the noise parameters were:

\[
\begin{align*}
\ln s_1 & \sim \text{Uniform}(\ln(0.3L), \ln(30L)) \\
\ln s_2 & \sim \text{Uniform}(\ln(s_1), \ln(s_1) + 2.3) \\
w & \sim \text{Uniform}(0, 1) \\
\ln \sigma_0 & \sim \text{Uniform}(\ln(10^{-3}), \ln(10^3)) \\
\ln \eta & \sim \text{Uniform}(\ln(10^{-3}), \ln(10^3))
\end{align*}
\]

where \(L = (x_{\text{max}} - x_{\text{min}})/n \) is the width of a pixel.

4. MCMC Implementation

The MCMC sampling was implemented using the Diffusive Nested Sampling (Brewer, Pártay, & Csányi 2011) method (hereafter DNS). DNS is a variant of the Nested Sampling (Skilling 2006) algorithm that uses Metropolis-Hastings updates, and is very generally applicable. The main difference between DNS and the standard Metropolis-Hastings algorithm is that the target distribution is modified. Rather than simply exploring the posterior distribution over catalog space, DNS constructs an alternative target distribution which is a mixture of the prior distribution with more constrained versions of the prior distribution. The modified target distribution assists the sampling in several ways. Firstly, the target distribution shrinks at a constant rate with time during the initial phase of the exploration. This is similar to the popular “simulated annealing” method (Kirkpatrick et al. 1983; Neal 2001) but with an optimal annealing schedule. Secondly, communication with the prior is maintained: once a catalog is found that fits the data, the catalog can “disintegrate” back to the prior distribution and re-fit, allowing different peaks in the parameter space to be explored (if they exist). This all happens naturally within the context of a valid MCMC sampler. The MCMC may also be run using the standard Metropolis algorithm targeting the posterior distribution.
5. Simulated Data

In order to test our approach, we applied the method to two illustrative simulated images generated from the above model. The purpose of this experiment was to test the computational feasibility of the model, as well as to compare the inferences from the model with those from more standard techniques.

The true parameter values for the two simulated data sets are listed in Table 1. The broken power-law parameter values were chosen so that roughly half of the stars’ fluxes were below and above the break-point respectively. Figure 8 in Appendix A also shows the true flux distribution used for the simulated images. Each of the images is 100×100 pixels in extent and covers a range from -1 to 1 in arbitrary units for both the x and y axes. The first image contains ~ 100 stars (including stars just outside of the image) and the second image contains ~ 1000 stars. The two simulated images themselves are shown in Figure 1.

![Fig. 1.— The two simulated images used to test our methodology. Left: A field containing ~ 100 stars. Right: A field containing ~ 1000 stars.](image-url)
5.1. Test Case 1

Test Case 1 was run with the DNS algorithm and usable results were obtained within about an hour on a modern desktop PC. The inferences on the parameters N, h_1, h_2, α_1, and α_2 are shown in Figure 2. The number of stars is correctly inferred, and the posterior distributions for the other parameters comfortably contain the true input values. Note that the uncertainty in h_2, α_1, and α_2 is quite large. This is because the broken power-law model (Figure 8) does not change drastically in shape as the parameters are varied. Therefore, a large number of stars would be required to tightly constrain the parameters. A Nested Sampling approach assists on this problem because of the presence of a first-order phase transition (Skilling 2006).

![Graph showing inference about the parameters for Test Case 1.](image)

Fig. 2.— Inference about the parameters for Test Case 1. Note that there is considerable uncertainty (particularly about h_2), which occurs because the shape of the broken power-law does not depend strongly on the parameters. The true input values are plotted as filled squares.

The PSF parameters $\{s_1, s_2, w\}$ and the noise parameters $\{\sigma_0, \eta\}$ were also inferred accurately with small uncertainties.

5.2. Test Case 2

Test Case 2 is more challenging than Test Case 1 because the image contains more stars. This increases the size of the computational task in a number of ways: firstly, there will be more unknown parameters to infer, so the convergence of the MCMC algorithm will take longer. Secondly, the time taken to compute the predicted image from a catalog (in order to evaluate the likelihood) is longer because of the larger number of stars. Using
DNS, some samples from the posterior distribution can be obtained in about a day on a modern PC. However, this problem does not have a first-order phase transition like Test Case 1. Therefore, it is tractable to run standard Metropolis-Hastings MCMC targeting the posterior distribution. In fact, this can be more efficient because the degree of compression from the prior distribution to the posterior distribution is very large ($\sim e^{3000}$) in this case.

![Fig. 3.— Inference about the parameters for Test Case 2. Note that the parameters are still not very well constrained even with the larger number of stars. The true input values are plotted as filled squares.](image)

Some summary results from Test Case 2 are shown in Figures 4 and 5. Figure 4 shows nine possible catalogs sampled from the posterior distribution. Features that are common to these nine samples are plausible, and features that differ are uncertain.

Each catalog in the posterior sample represents a scenario for the true underlying image that we would observe if we had a hypothetical noise-free, infinite resolution telescope. From these samples, we can construct the posterior expected true scene. This is shown in Figure 5 along with the blurred (but still noise-free) version and the residuals. The residuals provide a check on the validity of the model, and the posterior expected true scene provides a useful visual guide to the uncertainties present in the catalogs.

As with test case 1, the PSF parameters $\{s_1, s_2, w\}$ and the noise parameters $\{\sigma_0, \eta\}$ were also inferred accurately with small uncertainties.

6. Comparison to SExtractor

In the previous section we established that the inference of the catalogs from the data is computationally feasible and that the number of stars and the luminosity function can
Fig. 4.— Nine example catalogs sampled from the posterior distribution for Test Case 2. Features in common represent features with high probability, and differences between the catalogs represent conclusions that are uncertain. The area of each circle is proportional to the flux of the star.

be inferred from the image data, albeit with moderate uncertainty. We now compare this approach to an alternative analysis that makes use of the standard tool SExtractor. To achieve this, we executed SExtractor on the two test images, for various values of the detection threshold. This results in a set of catalogs for each image, with more conservative
thresholds resulting in less stars detected as compared to more aggressive thresholds. The results for the number of stars in the images are shown in Figure 6. The main result is that
SEductor significantly underestimates the number of stars in the image for all possible values of the detection threshold.

Fig. 6.— The number of stars in the catalogs produced by SExtractor compared with the actual number of stars in the images. SExtractor finds only a small fraction of the stars actually present. This is to be expected in the high-σ case as SExtractor then only searches for stars above a certain flux, but at the low-σ end the number of stars is still drastically underestimated. Note that the true numbers of stars shown in these plots are $\sim 82\%$ of the values listed in Figure 1 because here we only count those stars with positions in $[-1, 1] \times [-1, 1]$.

For Test Case 2, we then took the catalog produced by SExtractor for the 0.5σ threshold and fitted a broken power-law model to the list of fluxes in the catalog. Such an approach might be used to study the luminosity function of a set of stars in a field. The results of this inference are shown in Figure 7. The inference spuriously rules out the true values of the parameters. This occurs because the uncertainty in the stellar fluxes is not propagated through to the inference of the luminosity function.

7. Discussion and Conclusions

In this paper we have developed and demonstrated a Bayesian approach to making catalogs from astronomical images in the case where the image contains only stars (or other
Fig. 7.— Inference of the luminosity function parameters using the 0.5σ catalog from SExtractor. Note that the inference appears to rule out regions around the true input values. This occurs because the uncertainties in the existence and fluxes of the faint stars are not taken into account. The true input values are plotted as filled squares.

point sources). The key idea is that instead of computing a single catalog, the method creates a posterior probability distribution on the space of possible catalogs that represents our state of knowledge about the presence and properties of objects in the image. When this is done, the uncertainties in the imaging are accurately propagated through to scientific conclusions, for example about the luminosity function of the stars. This approach was contrasted with a standard method of running SExtractor and then fitting a luminosity function to the fluxes in the catalog. This latter approach was shown to produce incorrect inferences about the luminosity function.

We note that there are many limitations to the model presented in this paper. In principle, our model should be a model of the physical state of the universe, and not a simple model where the only stellar properties are a 2-D position and a flux. Another limitation is that we have not considered multi-epoch or multi-band imaging. In the former case, PSF variations and stellar motions may be relevant (Lang et al. 2009), and in the latter, a model for the spectral energy distributions of the stars will need to be considered.

In practice, it may also be necessary to improve the model for the prior distribution of stellar positions and fluxes. One area where this is clearly needed is the application of
this approach to images of stellar clusters. The model would need to be revised to take into account the fact that we expect the stars’ positions to be clustered together, whereas the current model implies a large prior probability for the stars being scattered evenly across the image. In this and other applications, the luminosity function would also require multiple components, for example consisting of stars that are associated with a cluster or a stream and those that are not.

Throughout this paper, we have also assumed that the pixel-convolved PSF can be adequately modeled using simple components and that there are no PSF variations across the field. Relaxing this assumption provides a significant challenge for the future.

8. Acknowledgements

It is a pleasure to thank Jonathan Goodman (NYU), Fengji Hou (NYU), Dustin Lang (CMU), Geraint Lewis (Sydney), and Phil Marshall (Oxford) for their comments and discussions. BJB would like to thank Tommaso Treu (UCSB) for his support, and Wayne Stewart and Arden Miller (Auckland) for their encouragement and advice. DFM and DWH were partially supported by the US National Science Foundation (grant IIS-1124794) and the US National Aeronautics and Space Administration (grant NNX12AI50G).

A. Broken Power-Law Distribution

The broken power-law distribution is based on a straightforward extension to a simple power-law distribution (also known as a Pareto distribution, particularly in the statistics literature). The power-law distribution for a variable x (given a lower cutoff $x = h$ and a slope α) is defined by:

$$p(x) \propto \begin{cases} 0, & x < h \\ x^{-\alpha - 1}, & x \geq h. \end{cases} \quad (A1)$$

In contrast, the broken power-law distribution for a variable x is defined by a lower cutoff $x = h_1$, two slopes $\{\alpha_1, \alpha_2\}$ and a break point $x = h_2$:

$$p(x) \propto \begin{cases} 0, & x < h_1 \\ x^{-\alpha_1 - 1}, & h_1 \leq x \leq h_2 \\ x^{-\alpha_2 - 1}, & x > h_2. \end{cases} \quad (A2)$$

The free parameters of the broken power-law are:

$$\beta = \{h_1, h_2, \alpha_1, \alpha_2\}. \quad (A3)$$
With normalising terms included, the proportionality becomes an equality:

\[
p(x) = \begin{cases}
0, & x < h_1 \\
Z_1^{-1}x^{-\alpha_1-1}, & h_1 \leq x \leq h_2 \\
Z_2^{-1}x^{-\alpha_2-1}, & x > h_2.
\end{cases}
\]
(A4)

Two conditions will be used to determine the normalizers \(Z_1\) and \(Z_2\). Firstly, the probability density function (PDF) should be continuous at \(x = h_2\):

\[
Z_1^{-1}h_2^{-\alpha_1-1} = Z_2^{-1}h_2^{-\alpha_2-1} \quad \implies Z_2 = Z_1h_2^{\alpha_2-\alpha_1}.
\]
(A5)

The second condition is that the total probability must be 1:

\[
\int_{h_1}^{h_2} Z_1^{-1}x^{-\alpha_1-1} \, dx + \int_{h_2}^{\infty} Z_2^{-1}x^{-\alpha_2-1} \, dx = 1
\]
(A7)

\[
Z_1^{-1} \alpha_1^{-1} \left[h_1^{-\alpha_1} - h_2^{-\alpha_1} \right] + Z_2^{-1} \alpha_2^{-1} h_2^{-\alpha_2} = 1
\]
(A8)

\[
Z_1^{-1} \alpha_1^{-1} \left[h_1^{-\alpha_1} - h_2^{-\alpha_1} \right] + Z_1^{-1} h_2^{-\alpha_2} \alpha_2^{-1} h_2^{-\alpha_2} = 1
\]
(A9)

\[
\implies Z_1 = \alpha_1^{-1} \left[h_1^{-\alpha_1} - h_2^{-\alpha_1} \right] + h_2^{-\alpha_1} \alpha_2^{-1}.
\]
(A10)

The cumulative distribution (CDF) is a useful property of a probability distribution and is given by the antiderivative of the PDF:

\[
P(X \leq x) = F(x) = \begin{cases}
0, & x < h_1 \\
(Z_1 \alpha_1)^{-1} \left(h_1^{-\alpha_1} - x^{-\alpha_1} \right), & h_1 \leq x \leq h_2 \\
1 - (Z_2 \alpha_2)^{-1} x^{-\alpha_2}, & x > h_2.
\end{cases}
\]
(A11)

The inverse of the CDF is also useful and is given by:

\[
F^{-1}(u) = \begin{cases}
\left[h_1^{-\alpha_1} - uZ_1 \alpha_1 \right]^{-1/\alpha_1}, & 0 < u < 1 - (Z_2 \alpha_2)^{-1} h_2^{-\alpha_2} \\
\left[Z_2 \alpha_2 (1 - u) \right]^{-1/\alpha_2}, & 1 - (Z_2 \alpha_2)^{-1} h_2^{-\alpha_2} < u < 1.
\end{cases}
\]
(A12)

An example of a broken power-law distribution is shown in Figure 8.

B. Proposal Distributions

To implement Metropolis-Hastings moves for the space of possible catalogs, proposal distributions are required. See Table 2 for a list of proposal distributions used in this study.
Table 1: True parameter values used to generate the simulated data. The main difference between the two test cases is the number of stars and the noise level, both of which are higher in test case 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Test Case 1)</th>
<th>Value (Test Case 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>100</td>
<td>1000</td>
</tr>
<tr>
<td>h_1</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>h_2</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>α_1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>α_2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>σ_0</td>
<td>0.05</td>
<td>0.3</td>
</tr>
<tr>
<td>η</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_1</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>s_2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>w</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 2: All δ parameters are drawn from multi-scale distributions such that the largest steps are of order the prior width, and the smallest steps are of order 10^{-6} times the prior width.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Proposal</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$N \rightarrow N + \delta N$</td>
<td>Generate δN new stars from $p(x, y, f</td>
</tr>
<tr>
<td>N</td>
<td>$N \rightarrow N - \delta N$</td>
<td>Remove δN stars, chosen at random</td>
</tr>
<tr>
<td>β</td>
<td>$\beta \rightarrow \beta + \delta \beta$</td>
<td>Transform stars’ fluxes correspondingly</td>
</tr>
<tr>
<td>β</td>
<td>$\beta \rightarrow \beta + \delta \beta$</td>
<td>Fix stars’ fluxes, put extra term in acceptance probability</td>
</tr>
<tr>
<td>(x_i, y_i)</td>
<td>$(x_i, y_i) \rightarrow (x_i, y_i) + (\delta x, \delta y)$</td>
<td>Can move > 1 star in a single step</td>
</tr>
<tr>
<td>f</td>
<td>$f \rightarrow f + \delta f$</td>
<td>Can move > 1 stars’ fluxes in a single step</td>
</tr>
</tbody>
</table>
Fig. 8.— A broken power-law distribution. The parameter values for this particular PDF were \(\{h_1, h_2, \alpha_1, \alpha_2\} = \{0.3, 0.6, 1.1, 2\} \), i.e. the same parameter values used to make the simulated data.

REFERENCES

Skilling, J., 2006, Nested Sampling for General Bayesian Computation, Bayesian Analysis 4, pp. 833-860.
