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ABSTRACT. We present a generic algorithm for performing astronomical image registration and pointing
refinement. The method is based on the matching of positions and fluxes of available point sources in image
overlap regions. This information is used to compute a set of image offset corrections by globally minimizing
a weighted sum of all matched point-source positional differences in a prespecified reference image frame. A
fast linear sparse matrix solver is used for the minimization. From these corrections, the pointings and orientations
of images can be refined in either a relative sense in which pointings become fixed (registered) relative to a
single input image, or in an absolute sense (in the International Celestial Reference System [ICRS]) if absolute
point-source information is known. The latter provides absolute pointing refinement to an accuracy that depends
on the robustness of point-source extractions, match statistics, and accuracy of the astrometric catalog used. The
software is currently used in the Spitzer image-processing pipelines, although it is adaptable to any astronomical
imaging system that uses the FITS image format and world coordinate system (WCS) pointing standard. We test
the algorithm using Monte Carlo simulations and compare them to image data acquired with the Infrared Array
Camera (IRAC) onboard the Spitzer Space Telescope. We find that dispersions in matched source separations
after refinement are entirely consistent with centroiding errors in source extractions, implying that systematic
uncertainties due to inaccurately calibrated distortions are negligible. For these data, we predict refinements to
better than ∼70 and ∼280 mas (2 j radial) for the IRAC 3.6 and 8 mm bands, respectively. These bands bracket
two extremes in available source matches, and for the data under study, correspond to an average of about 55
and 8 matches per image in these two bands, respectively.

1. INTRODUCTION
The ability to register or co-align images in astronomy to

an accuracy better than the Nyquist sampling density of a de-
tector’s point-response function is pivotal if one wants to max-
imize the resolution and signal-to-noise ratio (S/N) in a mosaic
of co-added images. Absolute accuracy is inhibited by insta-
bilities in telescope pointing control, tracking sensors, and how
these behave in the science instrument frame in the presence
of thermomechanical disturbances. For instance, imaging de-
tectors on both the Hubble1 and Spitzer2 Space Telescopes pro-
vide an absolute pointing accuracy of ∼0!.5–1! (1 j radial). By
comparison, the highest attainable resolutions3 are ∼0!.02 and
1! for these telescopes, respectively. Without further refine-
ment, the current pointing accuracies are insufficient to exploit
the near–diffraction-limited resolution capabilities the detectors
can provide. A factor of 10–20 improvement in pointing is
required for optimal image registration.
Good image registration enables source extraction and po-

sition determination to fainter flux levels for a given S/N. Com-

1 See http://www.stsci.edu/hst/observatory/pointing.
2 See http://ssc.spitzer.caltech.edu/documents/SOM.
3 Measured in terms of the full width at half-maximum (FWHM) of the

center of an Airy disk pattern.

parison or registration with astrometric sources whose positions
are known to better than a few percent of the observed image
pointing uncertainty also allows the refinement of image-frame
pointings in the International Celestial Reference System
(ICRS). Absolute pointing refinement can be achieved to an
accuracy approaching that of the astrometric catalog used, or
better, given good match statistics. This alleviates possible am-
biguities when performing cross-identification/correlation of
extracted sources across wavelength-dependent catalogs. Fur-
thermore, the accurate placement of slits for follow-up spec-
troscopic studies requires source positions that are accurate to
better than a few tenths of an arcsecond in the ICRS, or until
the desired positional accuracy is limited by centroiding error
in the array frame.
Broadly speaking, image registration methods can be loosely

divided into three classes: algorithms that use information in
pixel space directly (e.g., by correlating common objects; Bar-
nea & Silverman 1972), algorithms that attempt to match fea-
tures or identified parts of objects (known as “graph-theoretic”
methods; Brown 1992), and algorithms that use the frequency
domain (e.g., methods based on computing cross-correlation
power spectra via the fast Fourier transform; Kuglin & Hines
1975). The two conventional methods for registering images in
astronomy involve either interactively identifying common point

This content downloaded from 134.4.141.201 on Mon, 16 Jun 2014 12:10:40 PM
All use subject to JSTOR Terms and Conditions



ALGORITHM FOR POINTING REFINEMENT 843

2004 PASP, 116:842–858

sources in overlapping image fields (i.e., object correlation), or
using actual detector-acquired pointings (with inherent uncer-
tainties) directly and estimating relative image offsets from them.
These methods are available in most data-reduction packages
(e.g., IRAF, Davis 1996; STARLINK, Bly et al. 2002) and are
mostly limited by accuracies in point-source centroids, sufficient
match statistics, telescope pointing control, or are subject to ran-
dom-walk (cumulative) uncertainties.
A number of robust methods for astrometric calibration of

single images have also been implemented in the commonly
used data-reduction packages (Veran & Rigaut 1998; Valdes
1998; Bustos & Calderón 2000), although an automated, self-
consistent means for simultaneous registration and refinement
of multiple astronomical images comprising a mosaicked re-
gion is generally lacking. The single-image methods assume
one has sufficient numbers of astrometric matches to mitigate
against uncertainties in the centroids of extracted sources. We
have gone a step further by using the available point-source
content to obtain a global refined solution for all frames such
that all matched point-source positional discrepancies in all
frame-to-frame and frame-to-absolute overlaps are minimized.
Combining the relative and absolute source information reduces
the demand of having sufficient astrometric matches. This be-
comes important for mid- to far-infrared imagery, in which
cross-wavelength astrometric calibration is often unreliable, be-
cause of differing sensitivities, source populations, and detector
point-spread function (PSF) sizes.
We have developed an algorithm to simultaneously register

and refine the pointing of an ensemble of astronomical images
to accuracies better than that inherent in point-source centroid
uncertainties (and dictated by point source match statistics).
This paper describes the global minimization algorithm and
presents a case study using data from Spitzer’s Infrared Array
Camera (IRAC). The outline is as follows. Section 2 describes
the algorithm and the expected pointing refinement accuracies.
Section 3 validates the algorithm, using a Monte Carlo simu-
lation of IRAC data. Section 4 compares these results to real
observations acquired with IRAC. Discussion and conclusions
are given in § 5.

2. ALGORITHM
The algorithm has been implemented as a stand-alone soft-

ware package called POINTINGREFINE.4 The main inputs to
POINTINGREFINE are a FITS image list, with each FITS
image containing the standard world coordinate system (WCS)
keywords (Greisen & Calabretta 2002; Calabretta & Greisen
2002), an accompanying list of flux-calibrated point-source ex-
traction tables, an optional astrometric source list, and config-
uration parameters. The software accepts point-source extrac-
tion tables that adhere to the format generated by the Spitzer

4 The complete POINTINGREFINE package is available at http://
ssc.spitzer.caltech.edu/postbcd.

Science Center (SSC) source extractor. This includes programs
that perform point-source extraction as well, although these
will not be described here. A general overview of the pro-
cessing steps involved in the global minimization algorithm
(the heart of POINTINGREFINE) is shown in Figure 1. In the
following sections, we expand on some of the more important
computational steps of this algorithm.

2.1. Setup and Point-Source Matching
Prior to source matching, we first compute the total number

of image pairs expected to be overlapping (which could po-
tentially contain correlated/common sources) in the input en-
semble of images. This is used for efficient a priori memory
allocation. Given a number of images , the maximum num-Nimgs
ber of distinct frame pairs that can mutually overlap is

1N p N (N ! 1). (1)maxpairs imgs imgs2

This maximum occurs when all images are stacked more or
less on top of each other. For a sparse mosaic, this number is
smaller and thus puts less of a burden on the required memory.
The total number of potential overlapping frame pairs is found
by computing the distances between the centers of every image
pair and finding whether the distance is less than the typical
radius of a circle inscribing an image.
Source positions from all extraction tables (including ab-

solute astrometric references, if specified) are sorted by dec-
lination. This precondition speeds up the source-matching pro-
cedure, converting it from an to an approximate2O(N )

linear process. Every possible overlapping image pair isO(N)
scanned for common point sources in the R.A., decl. coordinate
system. Both position and flux matching is performed. The
position-match step attempts to find sources that fall within a
nominal search radius (typically several times the root sum
squares of prior image pointing uncertainty and extraction cen-
troid error). If more than one match is found within the search
radius, no match is declared, because of the possible ambiguity.
In other words, only singly matched sources within the search
radius are used. Sources are also simultaneously matched in
flux. A flux match is satisfied if two fluxes fall within a max-
imum tolerable relative flux difference threshold. The software
includes options for rescaling the input fluxes of astrometric
references to be commensurate with those of actual extractions.
A minimum of two matches per image is enforced to declare
a correlated image pair, since this is the minimum that is re-
quired to unambiguously estimate a rotational offset between
the pair.
In preparation for the global minimization step (see § 2.2

below), all point source match positions and uncertainties are
mapped into the pixel coordinates of a Cartesian reference
image frame. The definition of this reference depends on
whether absolute or relative refinement is desired. The POIN-
TINGREFINE software distinguishes between these options
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Fig. 1.—Processing and algorithmic flow in POINTINGREFINE software.
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Fig. 2.—Simple three-image mosaic. Filled circles show sources detected
from image n, and open circles show sources from m or 1.

Fig. 3.—One-dimensional representation of projection geometry showing
images on sky and in tangent plane of reference image. Images 1 and 2 have
the same physical size, but different projected sizes.

from its given inputs. Two inputs are required for absolute
refinement. First, the software expects a fiducial image frame
(FIF). This is a file listing various WCS parameters that define
the tangent point and boundary of a “fiducial image” encom-
passing all images. Second, a list of astrometric (absolute)
sources that fall within the FIF boundary is required. The FIF
acts as an effective input image whose sources are the astro-
metric references. Refinement with respect to such a FIF en-
sures both absolute and relative refinement among images. In
relative refinement mode, all input images can be registered
and refined with respect to a single input image. In this mode,
the user has the option of making the software automatically
select an image from the input list that is maximally correlated
(has most overlaps) with other images, or they can specify their
own.

2.2. Global Minimization
Consider the simple three-image mosaic in Figure 2. Image

1 defines the “fiducial” reference frame. The circles represent
point sources detected from each overlapping image pair trans-
formed into the reference frame of image 1. The filled circles
are sources extracted from image n, and the open circles are
sources extracted from either image 1 orm. The matched source
pairs are shown offset from each other to mimic the presence
of random pointing uncertainty in each input image. These are
the offsets we wish to compute and use to correct each frame
pointing. A one-dimensional representation of the projection
geometry in the reference image frame is depicted in Figure
3. All input images have sizes in the reference frame that de-
pend on their distance from the reference image tangent point.
The projected linear size scales with angular distance asvt
∼ . The POINTINGREFINE algorithm appropriately21" tan vt
accounts for the inflation of centroid uncertainties and sepa-

rations of correlated sources when projected into the reference
frame. A potential problem for the algorithm is if image sizes
and mosaic extents are large enough to cause a nonuniform
dependence in scale over the region in which an input image
is projected. The dependence of this effect with , however, isvt
weak. For instance, the projected scale varies by "1% across
an image 30# in size at angular distances .v " 30"t

The main assumption of the algorithm is that the random
uncertainty in the measured twist angle5 of an individual image
frame ( in Fig. 2) is small enough to ensurem mdv sin dv ≈

(see below). A twist angle uncertainty of is a goodm ′dv dv " 1
working measure for the purposes of this algorithm. This is
justified for the Spitzer science instruments, in which the ab-
solute twist angle uncertainty (IPF Team 2003) is typically
"30! (1 j).
In a rectilinear coordinate system (defined, say, by the frame

of image 1 in Fig. 2), the positions of a point source i detected
from images m and n are related via the transformation

m nx x̃i ir pnm ( )( ) ỹy ii

m mm m m mcos dv ! sin dvx x !x dXc i c" " , (2)m m( )m m m m( ) ( ) ( )sin dv cos dvy y !y dYc i c

where is a rotational offset, and are orthogonalm m mdv dX dY
translations, and ( , ) are the center coordinates of imagem mx yc c

m in the reference image frame. The rotation is measuredmdv
in a counterclockwise sense so that a rotation followed by
orthogonal translations in x and y of image m will align the
sources (open circles) detected therein with those detected in
image n.
The assumption of small twist angle uncertainty (see above)

implies and , and thus the pair ofm m msin dv ≈ dv cos dv ≈ 1

5 We define “twist angle” as the relative orientation of an image in an
orthogonal coordinate system, not the conventional position angle measured
in the ICRS.
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equations defined by equation (2) can be linearized in asmdv

m n m m m m m˜x r x p x ! (y ! y )dv " dX ,i i i i c

m n m m m m m˜y r y p y " (x ! x )dv " dY , (3)i i i i c

where ( , ) represents a position that has been corrected forn n˜ ˜x yi i

unknown image rotation and orthogonal translations.
We define a cost function L, representing an inverse-variance

weighted sum of squares of all matched point-source positional
differences from all overlapping image pairs (m, n):

1 n m 2˜ ˜L p (x ! x )! ! i im, n[Dx1m, n(n m) i i

1 n m 2˜ ˜" (y ! y ) "L , (4)i i a priorim, n ]Dyi

where

m, n 2 m 2 nDx p j (x )" j (x ), (5)i i i

m, n 2 m 2 nDy p j (y )" j (y ),i i i

and represent variances in extracted point-source centroids.2j
The summations in equation (4) are over all matched point-
sources from all image overlaps, including sources matched to
any astrometric references present in the FIF, if available. The
FIF, or absolute reference frame (as defined in § 2.1), is treated
as an effective input image when source matching is performed.
The additive term in equation (4) represents an a prioriL a priori

weighting function that makes use of actual measured pointing
uncertainties of the images. This function is defined as

m 2 m 2 m 2(dX ) (dY ) (dv )
L p " "!a priori 2 2 2{ j j j1m, n(n m) Xm Ym vm

n 2 n 2 n 2(dX ) (dY ) (dv )
" " " , (6)2 2 2 }j j jXn Yn vn

where and ( ) represent measured pointing2 2j j j p X, Y, vjm jn

variances (in the ICRS) transformed into the reference image
frame. The purpose of including is to avoid overrefiningL a priori
or biasing those images whose inherent measured pointing un-
certainties are already small (within nominal requirements). In
other words, those images whose uncertainties are known to
be small a priori will have a larger contribution to rel-L a priori
ative to the correlated source term (double sum in eq. [4]).
Consequently, the solution will be biased toward minimizing

and not the correlated source term, which could poten-L a priori
tially degrade expected image offsets (and final refined point-
ings). In the limit , the global minimum will be closerL r L a priori
to . Conversely, large pointing uncertaintiesdv ≈ dX ≈ dY ≈ 0

will bias the solution toward the correlated source term in which
refinement via point-source matches is obviously needed.
Equation (4) can be rewritten in terms of physical image

offsets , , and for an arbitrary imagem via equationsm m mdv dX dY
(3) and (6):

1 m m m mL p x ! (y ! y )dv[! ! { i i cm, n( Dx1m, n(n m) i i

2m n n n n n"dX ! x " (y ! y )dv ! dX ]i i c

1 m m m m" y " (x ! x )dv[ i i cm, nDyi

2m n n n n n"dY ! y ! (x ! x )dv " dY ] }i i c

m 2 m 2 m 2(dX ) (dY ) (dv )
" " "2 2 2j j jXm Ym vm

n 2 n 2 n 2(dX ) (dY ) (dv )
" " " .2 2 2 )j j jXn Yn vn

(7)

The cost function defined by equation (7) can be treated as a
standard statistic to the extent that point-source centroid2x
uncertainties are independently random and Gaussian, a good
approximation in this case. The probability density function
for L about its global minimum is therefore the distribution2x
for n degrees of freedom (dof) where

n p 2N ! 3(N ! 1). (8)matches imgs

is the total number of point-source matches in all imageNmatches
overlap regions, and is the total number of images con-Nimgs
taining the detected matches (including the reference image).
The total number of parameters to solve is actually 3(N !imgs

, since we have three offsets ( , , and ) for everym m m1) dv dX dY
image m, and we exclude the reference image, which by defi-
nition is constrained to have , and .dv p 0 dX p 0 dY p 0
Our aim is to minimize L with respect to all image offsets
, , and for every correlated image m. At the globalm m mdv dX dY

minimum of L, partial derivatives with respect to these three
offsets for each image m are required to vanish:

$L $L $L
p 0; p 0; p 0. (9)m m m$dv $dX $dY

Evaluating these partial derivatives leads to a set of three si-
multaneous equations for each image in the ensemble. For

, we therefore have simultaneous equationsN 3(N ! 1)imgs imgs

in unknowns. Each image m of an ensemble3(N ! 1)imgs

could potentially be correlated (contain sourcesm p 1 … M
in common) with any other image n in which n p
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and . From the conditions1 … N; m ( n M p N p N ! 1imgs

defined in equation (9), the simultaneous system of equations
used to solve for the offsets of all images m can be represented
as the matrix equation

mp1 mp1 mp1 npN npN npNA A A … A A Av X Y v X Y 
mp1 mp1 npN npNB B 0 … B B 0v X v X
mp1 mp1 npN npNC 0 C … C 0 Cv Y v Y

… … … … … … …
np1 np1 np1 mpM mpM mpMA A A … A A Av X Y v X Y
np1 np1 mpM mpM B B 0 … B B 0v X v X
np1 np1 mpM mpMC 0 C … C 0 C v Y v Y

mp1 mp1dv WA   
mp1 mp1dX WB
mp1 mp1dY WC

# … p … . (10)
mpM mpMdv WA
mpM mpM   dX WB
mpM mpMdY W   C

Equation (10) is of the form . Elements of the co-M · X p W
efficient matrix and the right-hand side column vectorM W
are given in Appendix A. The solution for the column vector
with unknowns can be obtained using linearX 3(N ! 1)imgs

sparse matrix methods, since a large number of the matrix
elements can be zero, depending on the mosaic geometry. In
general, the fraction of zeros will be ≥ (%22%). The ∼22%2

9
minimum will occur when every image of the ensemble is
correlated with every other image, such as in a co-added stack.
The level of sparsity in will increase with nonzero elementsM
along a block diagonal if one desires to tie and refine images
with respect to astrometric absolute references alone. In this
specialized case, n p the reference image, and all elements
with superscript n in will be zero. In general, the minimumM
and maximum possible number of zeros in the matrix areM

2N p 2(N ! 1) , (11)min imgs

2N p 9(N ! 1) ! 7(N ! 1).max imgs imgs

We use the UMFPACK6 library to solve the matrix equation
(10). This is adapted for solving large nonsymmetric matrix
systems. The library includes an iterative scheme to correct
solutions for the inevitable accumulation in round-off error
during the Lower and Upper (LU) matrix factorization stage.
We also compute the full error-covariance matrix for all im-

age offsets ( , , and ), which is given by the inversem m mdv dX dY
of the coefficient matrix, (e.g., Press et al. 1999).!1C p M
Variances in each offset are along the diagonal of , and co-C
variances are given by off-diagonal elements. The covariance
matrix is computed using the same matrix solver as aboveC

6 See http://www.cise.ufl.edu/research/sparse/umfpack.

by repeatedly solving for each unknown column in !1X Mc

such that , where is the corresponding columnM · X p I Ic c c

in the identity matrix. An analysis of the covariance matrix
using real data is presented in Appendix B.
Images that are not correlated (lack point-source matches)

with any others in the input ensemble cannot contribute to the
globally minimized cost function L. For these images, the
POINTINGREFINE software explicitly sets their reference
frame offsets to zero, and no refinement of their pointing is
possible. As a further detail, the inclusion of the a priori weight-
ing function (eq. [6]) guarantees that the matrix in equa-L a priori
tion (10) will be nonsingular. The priors provide at least one
measurement per image. If these are omitted from the cost
function (eq. [4]), then there are cases in which the matrix
could be singular. This can occur if the input image ensemble
contains clusters of correlated images disjoint from each other
and with a noncontiguous/broken path existing between the
clusters. This situation leads to an underrepresention of images
across the full simultaneous system of equations, and the de-
terminant will be zero. As indicated in the processing flow of
Figure 1, if this occurs in “absolute refinement” mode, a sec-
ond-pass computation is attempted, and only those frames that
contain absolute astrometric matches are used. No relative
frame-to-frame information is used, and images are refined
based on their absolute source content alone. The matrix ef-
fectively becomes block diagonal, and a nonzero determinant
is guaranteed. In “relative refinement” mode, no attempt is
made to perform registration within each disjoint subensemble.
Instead, the software will abort with a message indicating that
disjoint clusters exist.
Once image offset corrections ( , , and ) and as-m m mdv dX dY

sociated uncertainties have been determined in the reference
image frame, the final step involves refining the celestial point-
ing and orientation of each image m. This is performed by
correcting the pointing centers ( , ) of each image in them mx yc c

reference image frame via equation (3); i.e.,

m m mx (new) p x (old)" dX , (12)c c

m m my (new) p y (old)" dY ,c c

and then transforming back to the sky to yield refined pointings
in the ICRS. Image orientations are refined in a similar manner.
For these, we correct and transform two fiducial points per
image to uniquely determine the refined position angle. The
main outputs of the POINTINGREFINE software are additional
WCS keywords written to FITS image headers representing
refined pointings and orientations on the sky (see processing
flow in Fig. 1).

2.3. Optimization and Expectations
The accuracy in pointing refinement or registration can be

severely limited by systematics. For example, inaccurately cal-
ibrated image scale and/or distortions known a priori to be po-
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sition dependent will bias extraction centroids and have adverse
effects on the separations of bona fide sourcematches and, hence,
final globally minimized solutions. A method to test for possible
contamination from systematics involves examining distributions
of matched source separations after refinement and comparing
them with those contributed by (random) centroid uncertainties.
This is performed with real data in § 4.
The presence of absolute-astrometric point sources are an

important ingredient for refinement and registration in general.
These reduce the potential for a biased random walk in the
refined pointing of an image as its distance from a fiducial
reference increases. Such effects are also alleviated by using
appropriate prior pointing uncertainty information in the global
minimization cost function (see eq. [4]). Absolute astrometric
references provide a set of “anchor points” to which all ex-
tractions will be attracted. If one wants to perform absolute
refinement with few or no astrometric references, then sufficient
numbers of images are needed to increase the number of po-
tential matches in frame overlap regions for a single point
source. This is necessary in order to approach a normal dis-
tribution about the expected absolute source position. In other
words, large numbers of correlated source positions will ensure
that the mean position of a correlated source cluster is close
to the “truth,” or that which will result after refinement (as-
suming there are no systematics as discussed above). Because
of the rarity of cases involving numerous image overlaps to
provide good normally distributed sampling, it is advisable to
use astrometric references wherever possible.
The accuracy to which we can refine the pointings of an

ensemble of mutually correlated images primarily depends on
the number of point-source matches available (both relative
and absolute). With randomly distributed uncertainties in point-
source centroids, it is expected that the mean separation be-
tween matched source positions is approximately Gaussian af-
ter refinement, by virtue of the central limit theorem. In this
limit, the (radial) uncertainty in refinement7 of a single image
will scale as

2 2j " jext abs"j # , (13)r 2 2( )N /2 1" (j /j ) "N[ ]ext abs ext abs

where and respectively represent the number of frame-N Next abs

to-frame and frame-to-absolute source match pairs in all overlap
regions associated with the image, is a typical source ex-jext
traction centroid uncertainty, and is an astrometric sourcejabs
position uncertainty. This approximation assumes that j 1 0ext

or when either or , respectively. For casesj 1 0 N 1 0 N 1 0abs ext abs

in which there are no astrometric matches, we set andN p 0abs

, and equation (13) reduces to . We expect1/2j p 0 j (2/N )abs ext ext

7 Approximated as the uncertainty in the mean source match separation,
with source positions weighted by their inverse variances.

to measure source extraction centroids to better than ∼0.1 pixel,
(∼0!.121 for Spitzer’s IRAC focal plane arrays). If we assume,
for example, astrometric positional errors of∼0!.2 (conservatively
speaking), then to refine image pointings to an accuracy better
than ∼0!.1 will require at least five astrometric point-source
matches per frame if , or less if . One can seeN p 0 N 1 0ext ext

that the refinement accuracy increases with more point-source
matches. This assumes that the observational setup allows for
sufficient frame-to-frame overlap to ensure good numbers of
relative matches . If this is not the case, one will have toNext
resort to using pure astrometric (absolute source) matches alone.
To summarize, corrections for optimal refinement will ef-

fectively be given by the magnitude of frame-pointing uncer-
tainties, with errors approximated by equation (13). The latter
assumes that in the limit of the increasing number of matches,
the mean source separation per image overlap region is ap-
proximately normally distributed, with an uncertainty deter-
mined exclusively by point-source centroid uncertainties. Any
position-dependent systematic offset between source matches,
such as nonuniform pixel scale or inaccurately calibrated dis-
tortion, will limit the refinement accuracy to the size of sys-
tematic error involved.

3. VALIDATION USING A MONTE CARLO
SIMULATION

We quantitatively assess the performance of the above al-
gorithm by using a simulation of 1000 mosaicked images, with
each image’s coordinates modeled with an uncertainty drawn
from a Gaussian distribution. The simulation is generic in the
sense that it represents a good overall representation of the type
of data that could be acquired with modern optical/near-infrared
detectors to moderately faint magnitudes ( orm # 23opt

). To facilitate a comparison with real observationsm # 19near-IR

in § 4, we have decided to model the source count distribution
and detector properties with that expected (and more or less
observed) in the 3.6 mm band of Spitzer’s IRAC instrument.
A more detailed description is given in § 4.
The “truth” source flux-density distribution was simulated

using models given by Xu et al. (2003). These assume a high
galactic latitude stellar model, several galaxy luminosity func-
tions that depend on galaxy morphological type, and exploit a
large library of spectral energy distributions. This simulation
was used extensively for predicting Spitzer source populations
(Lonsdale et al. 2003) and for validating processing pipelines.
The simulation steps are as follows.

1. A “truth” list of random source flux densities was gen-
erated using models from Xu et al. (2003), covering an area
of 0.45 deg2 down to a flux density of 10 mJy at 3.6 mm
(equivalent to #18.6 mag in the Vega system).
2. Truth sources were assigned both random and correlated

positions within the area to be mosaicked. Galaxies were as-
sumed to have a weak correlated component, with amplitude
(excess above random) based on an empiricalK-band two-point
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Fig. 4.—Top: Unrefined mosaic section of 1000 image IRAC simulation at
3.6 mm; bottom: same section after pointing refinement. Field dimensions are
# .2#.8# 3#.8

angular correlation function . A pixel!0.8w(v) # 0.001(v/ deg)
scale of ∼1!.21 (characteristic of the IRAC arrays) was used
when mapping sources to the pixel frame of the mosaic.
3. Truth sources were convolved with a PSF8 that was scaled

by the appropriate source flux. PSF-convolved truth sources
were mapped into the mosaic frame, with no pixel resampling.
4. A total of 1000 ( pixel) “truth image” frames256# 256

were generated from the full mosaic area by using a dither and
mapping strategy that assumed ∼60% adjacent image overlap.
The optimal map geometry for this 1000 image set was gen-
erated by D. Shupe (2002, SSC, private communication). R.A.,
decl., and twist angle information is also attached to each image
at this stage.
5. A new set of 1000 images was generated (our simulated

control sample), with uncertainties added to image pointings and
position angles. Pointing offsets (prior uncertainties) were mod-
eled as Gaussian random deviates along each independent or-
thogonal image axis. These were drawn from a zero-mean Gaus-
sian distribution with per axis. This choice for j isj p 0!.85
based on a prelaunch pointing knowledge of ∼1!.2 (1 j radial)
for Spitzer in the science instrument frame (Lawrence et al.
2000). Even though Spitzer can now actually do better than this
by a factor of ∼1.5 (see § 4), the ultimately refined pointings
are independent of the magnitude of any reasonable simulated
prior uncertainty assumed (see below). Twist angle uncertainties
were modeled as Gaussian, with . A smoothly varying′′j p 20
background adjusted with the expected Poisson and (IRAC band
1) read noise per pixel was added to each image.
6. An absolute source list (representing astrometric refer-

ences) was generated by taking the brightest true sources that
gave a mean density of #50 sources per image5#.2# 5#.2
region. This resulted in 3030 true sources. To imitate an astro-
metric catalog, the sources were assigned positions modeled as

along each axis, with u drawn from a Gaussian dis-truth# uj
tribution with . This is typical for sources in the Twoj p 0!.06
Micron All Sky Survey (2MASS) Point-Source Catalog to

(see § 4 for details regarding the 2MASS catalog).K # 15s

7. The SSC point-source extractor was used on each simu-
lated (control) image to extract sources above a threshold of 5
j. This resulted in ∼40 extractions per frame.

The POINTINGREFINE software was executed on the 1000
image control sample. A source match radius of 3!.5 was used
to comfortably accommodate prior image pointing errors and
extraction centroid errors (typically 0!.15, 1 j per axis). Si-
multaneous flux matching was also applied between frame-to-
frame and frame-to-absolute (astrometric) matches, with max-
imum flux-difference thresholds of 5% and 10%, respectively.
A zoomed-in ( ) section of our 1000 image simulation2#.8# 3#.8
(with image pointing errors) is shown in the left panel of Figure

8 Made from in-flight IRAC band 1 observations by the IRAC Instrument
Support Team at the SSC. It has an FWHM of ∼1!.66 and ∼42% central pixel
flux.

4. On the right is the same section after pointing refinement.
The increase in resolution is dramatic. There is a factor of ∼6
decrease in mean source match separation, leading to more
localized point-source flux distributions and detectability to
fainter levels. In this test, the surface brightness is increased
by factors of ∼2–3.5 for detected sources after refinement. This
is as expected, given that the 1 j radial image pointing un-
certainty is of the order the input pixel size, and the intrinsic
PSF has a FWHM of #1!.66.
To get a more quantitative assessment of the performance

of POINTINGREFINE, we compare the distribution of sepa-
rations between image center pointings of “truth” and simulated
(control sample) images before and after refinement. This is
shown in the top panel of Figure 5. Two different runs of
POINTINGREFINE were performed, based on the number of
(brightest) extractions used per image. One gave an average of
∼10 relative (frame to frame) and ∼20 absolute-astrometric
source matches per image (the “10/20 match” case), and the
second resulted in an average of ∼2 relative and ∼3 absolute
matches per image (the “2/3 match” case). It should be noted
that two matches per image is the absolute minimum required
to unambiguously determine two orthogonal shifts and an ori-
entation per frame (i.e., the number of degrees of freedom
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Fig. 5.—Left: Distributions of image center separations relative to “truth” before and after refinement. Right: Offsets in R.A. and decl. between image centers
relative to truth. Circle represents 2 j region of “truth refined” distribution for case with ∼2 relative/3 absolute matches per image (dot-filled histogram in top
figure).

Fig. 6.—Left: Distributions of the magnitude of refinement, represented as a percentage of initial “truth unrefined” image separation. Right: Distributions of
matched source radial separations before and after refinement.

). The dispersion in image separa-(dof) p 2N ! 3 p 1matches

tion relative to truth after refinement for the 10/20 match case
is #65 mas (1 j radial). For the 2/3 match case, this is #110
mas. For the given match statistics, these numbers are more or
less consistent with the simple scaling relation given by equa-
tion (13). Offset distributions along each axis are shown in the
lower panel of Figure 5, where the open circle represents the
2 j contour for the 2/3 match case.
By comparing differences in image radial separations before

and after refinement, we find that over 890 images have their
pointing refined to better than 95% relative to “truth” (for the 10/

20 match case). The top panel in Figure 6 shows the distribution
in fractional refinement. This quantity is defined as the ratio of
separations, .1! D(refined! truth)/D(unrefined! refined)
For the 2/3 match case, slightly less than half have the same
amount of refinement, although most images are refined to
better than 80%, corresponding to a discrepancy of #180 mas
within truth image positions. Thus, the refinement is very good,
even with minimal matches.
The bottom panel in Figure 6 shows distributions in matched

source radial separations before and after refinement. Uncer-
tainties in both image pointing and source extraction centroids
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Fig. 7.—Left: Uncertainty in matched source radial separation (from centroid uncertainties) as a function of actual source separation after refinement. Right:
Reduced (i.e., /dof) as a function of mosaic subset composed of successively increasing numbers of images i (see § 3).2 2x x

(or radial separation) contribute to the dispersion in the un-
refined distribution. Image pointing uncertainties dominate,
with a 1!.2 contribution compared to #0!.2 for extraction cen-
troids (both 1 j radial). After pointing refinement, the disper-
sion in radial source separation is expected to be dominated
exclusively by extraction centroid errors and, indeed, the dis-
tributions confirm this for both the 2/3 and 10/20 match cases
(Fig. 6, bottom left). The distribution for the 2/3 match case is
narrower, since such matches were performed using the bright-
est extractions per image, and these inherently have better de-
termined centroids.
The separation between two source extraction centroids

( ) and ( ) is given byx , y x , yi i j j

1/22 2r p (x ! x ) " (y ! y ) . (14)[ ]i j i j

Since a majority of extractions are unresolved point sources
with very circular error ellipses, we can ignore any correlations
between uncertainties along each axis. To a good approxima-
tion, the uncertainty in radial separation between any two cen-
troids can therefore be written

2 2 2 2" "j # j " j # j " j , (15)r x x y yi j i j

where ( ) and ( ) are centroid variances in each axis2 2 2 2j , j j , jx y x yi i j j

for sources i and j, respectively. A comparison between un-
certainties in matched source radial separation (eq. [15]) and
actual separations (eq. [14]) after refinement is shown in the
top panel of Figure 7 (for 10/20 match case). They are both
mutually consistent, although the spread is greater at separa-
tions "0!.3. After refinement and in the absence of systematics,
any residual separation in a matched source pair must be due to
intrinsic centroiding error alone. Since separations between

matched sources along each axis are, to a good approximation,
independently random and normally distributed with zero mean
( ), the quantity r (eq. [14]) can be shownAx ! x S # Ay ! y S # 0i j i j

to follow a x distribution with 2 dof (e.g., Evans et al. 2000).
This special case is also known as the Rayleigh distribution:

2r 1 r
P(r) p exp ! , (16)( )[ ]2b 2 b

where b is a parameter characterizing the width. This can be
written in terms of the second moment (variance) of asP(r)

2 2"b p j # 1.52j . (17)r r( )4! p

For a given uncertainty as computed from equation (15),jr
the variation in the density of points with r along any horizontal
cut in Figure 7 is qualitatively consistent with that predicted
by equations (16) and (17).
The bottom panel of Figure 7 shows the dependence of the

reduced (effectively the cost function in eq. [7] divided by2x
number of degrees of freedom defined by eq. [8]) as a function
of increasing number of images in our 1000 image simu-Ni

lation. It is important to note that image offsets are not recom-
puted using repeated global minimizations for each new set of
images . Instead, the original full 1000 image solution ofNi

image offsets is used throughout to recompute from equation2x
(7) as is increased for all image pairs ( ) such thatN m, n n !i

. As one approaches the full image set of ,m ≤ N N p 1000i i

one expects the reduced to converge to unity if, on average,2x
residuals in source separations after refinement are purely con-
sistent with extraction centroid uncertainties. The lower re-
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Fig. 8.—Coverage mosaic and mapping geometry of the 105 image IRAC
observation used in this analysis. Adjacent images have ∼20% overlap, with
a coverage of six and 12 pixels at edges and (inner) corners, respectively.
Mapping direction is shown by arrows starting at top right and ending at
bottom left. Open circles are image centers.

duced values for smaller image numbers (and particularly2x
for all image numbers in the 2/3 match case) is due to the
nonlinear behavior in when the number of degrees of free-2x
dom is small. Better fits (smaller ) can be obtained for very2x
low numbers of degrees of freedom. In Figure 7 (bottom panel),
only the 10/20 match case (with absolute refinement as studied
above) shows approximate convergence to 1, and the other
curves are not far from it. Also shown is a case in which only
relative frame-to-frame matches and no astrometric references
are used. This case tends to show a slightly higher reduced 2x
(#1.04), which is significant, since it is almost 20 standard de-
viations from the expected value in reduced (2x j p2x

, where dof ). This was traced as being due1/2(2/dof) p 308,935
to slightly underestimated uncertainties in extraction centroids.
This is not seen in the absolute refinement case (solid curve),
since absolute astrometric uncertainties are themselves overes-
timated, and their (almost equal) contribution tends to lower the
effective when combined with relative frame-to-frame2x
matches.
To summarize, we have presented a simulation to ascertain

the performance of the POINTINGREFINE algorithm. The
model-dependent parameters entering our simulation can be

isolated to properties of 3.6 mm source populations, specifics
of the IRAC band 1 array, such as PSF and pixelization, and
a priori telescope pointing knowledge. These can be appro-
priately rescaled to model other wavelengths and detectors.
However, in the absence of systematics in the locations of
potential matches between frames (both absolute and relative),
and regardless of instrumental setup or detector properties, the
accuracy in refined pointing is purely dictated by the accuracy
of point-source centroids and match statistics. Our simulation
(Figs. 5 and 6) indeed shows that the refined pointing will
typically never be worse than the (combined) centroid uncer-
tainties of matched pairs of sources. A well-sampled and char-
acterized PSF is expected to give centroiding accuracies to
better than 1/10 of a resolution element. If errors are indepen-
dently random, good match statistics can then only work in
our favor to give the desired ∼ improvement in1/21/(N )matches

pointing accuracy.

4. TESTING ON SPITZER IRAC DATA
The Infrared Array Camera is one of three focal plane in-

struments on the Spitzer Space Telescope (Fazio 2004). IRAC
provides simultaneous ∼ images at 3.6, 4.5, 5.8, and5#.2# 5#.2
8 mm (bands 1–4). All four detector arrays in the camera are

pixels in size, with a pixel size #1!.2. We present256# 256
here the results of a case study of observations acquired with
IRAC during the in-orbit checkout period (2003 October). In
this section, we validate the pointing performance of IRAC
and estimate the accuracy of refinement that can be achieved
using a standard astrometric catalog and comparisons with our
simulation of the 3.6 mm band from § 3.
The observational request used for our case study consists

of 105 regularly spaced images arranged in a rectangular raster
pattern. The coverage map and geometry is shown in Figure
8. Adjacent images have ∼20% overlap in each axis, with a
coverage of six and 12 pixels at the edges and (inner) corners,
respectively. The mapping was performed in repetitive hori-
zontal scans, as shown by arrows in Figure 8. The first image
is at top right, and the last at bottom left. All images across all
bands were preprocessed for removal of instrumental signatures
using the SSC’s IRAC pipeline,9 and raw pointing information
was attached to FITS headers. Source extraction was then per-
formed using the SSC source extractor and PSFs characterized
from in-flight data. Sources were extracted to a uniform S/N of
5 j in each band, resulting in an average of ∼39, 24, 13, and 6
extractions per image for bands 1, 2, 3, and 4, respectively. Errors
in flux-weighted centroids were on average ∼0!.18, 0!.22, 0!.26,
and 0!.27 (1 j radial) for each band, respectively.
We used data from the Two Micron All Sky Survey10 to

define a standard astrometric catalog for all IRAC bands. Zach-
arias et al. (2003) used the USNO CCD Astrograph Catalog
(UCAC; which is accurate to ∼20 mas) to perform an assess-

9 See http://ssc.spitzer.caltech.edu/documents/SOM.
10 See http://www.ipac.caltech.edu/2mass.
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TABLE 1
Statistics for IRAC Observation Case Study

l Band
(mm) AAbs.Sa ARel.Sb

ADbefSAc

(arcsec)
ADbefSRc

(arcsec)
ADaftSTd

(arcsec) 2x dofe /dof2x

3.6 . . . . . . 34.7 20.5 0.847 0.605 0.151 8580.84 10821 0.792
4.5 . . . . . . 20.7 13.7 0.883 0.622 0.152 3843.93 5645 0.681
5.8 . . . . . . 9.4 7.6 0.933 0.603 0.142 1250.31 2443 0.511
8.0 . . . . . . 5.3 2.1 0.913 0.651 0.203 1240.50 1249 0.993

a Average number of absolute matches per frame.
b Average number of relative (frame to frame) matches per frame.
c and represent the mean matched source separation before refinement for absoluteAD S AD Sbef A bef R

and relative matches, respectively (see Fig. 9).
d represents the mean total matched source separation (for both relative and absoluteAD Saft T

matches) after refinement.
e Number of degrees of freedom (see eq. [8]).

ment of the accuracy of 2MASS astrometry. They found ran-
dom errors of 2MASS positions of ∼85–140 mas radial to a
limiting magnitude of 15. We use astrometric sources de-Ks

tected in the 2MASS band (2.12 mm), which is well suitedKs

to IRAC, and as a good working measure, we impose a mag-
nitude limit of . To this limit and at the highest galacticK p 15s

latitudes ( ), one expects to find at least two astrometricFbF 1 60"
sources per ∼ IRAC field ∼60% of the time. In the5#.2# 5#.2
galactic plane anticenter, this increases to at least 30 sources
80% of the time (J. Surace 2000, SSC, private communication).
Using source extractions and astrometric references, the

POINTINGREFINE software was executed on each of the four
band-dependent 105 image ensembles. Guided by an ex post
facto analysis of typical source separations and flux differences,
point-source matching was performed using a nominal search
radius of 2!, and simultaneous flux matching was performed
with relative (frame to frame) and astrometric (frame to ab-
solute) flux difference thresholds of 4% and 50%, respectively,
across all bands. Flux matching thresholds were set conser-
vatively high to account for relative and absolute photometric
calibration errors and intrinsic scatter between source popu-
lations detected in the 2MASS and IRAC bands. Relative and
astrometric match statistics are summarized in Table 1.
Figure 9 shows distributions in matched source radial sep-

arations before and after refinement for all bands. Relative and
astrometric matches have been separated. These distributions
provide a powerful diagnostic with which to assess the in-flight
pointing performance in the IRAC science instrument frame.
The end-to-end pointing accuracy is a function of the inherent
star-tracker accuracy, the spacecraft control system, how well
the star-tracker bore sight is known in the telescope pointing
frame and focal plane array (science instrument) frame, and
variations in these due to thermomechanical deflections.
Spitzer’s star-tracker assembly alone provides pointing and con-
trol to better than 0!.3 absolute accuracy over a 200 s integration
(Lawrence et al. 2000). For comparison, each pointed obser-
vation in this study corresponds to an integration of #1.2 s.
We can get an estimate of both the relative and absolute raw

pointing for IRAC from the “before refinement” (heavy solid

and dotted lines) histograms in Figure 9. The main difference
between bands is in the number of point-source matches. Other
than that, ranges in radial distributions are more or less con-
sistent. Across all bands, the 1 j radial separation between
frame-to-absolute matches is ∼0!.85–0!.93, while for relative
(frame to frame) matches, this is ∼0!.61–0!.65 (See Table 1). In
addition to actual pointing dispersion, these estimates include
a dispersion component from point-source centroid errors. The
contribution from centroiding error to the “before refinement”
distributions, however, is negligible. Taking for instance the
band 1 average centroiding error of ∼0!.18 and ∼0!.085 for
2MASS (1 j radial), this translates to effectivematch separation
uncertainties of ∼0!.14 and ∼0!.18 for frame-to-absolute and
frame-to-frame (relative) matches, respectively, assuming er-
rors in each axis are uncorrelated (see eq. [15]). This implies
that the actual absolute and relative pointing of the IRAC arrays
is typically and2 2 1/2 2 2 1/2(0.85 –0.14 ) ≈ 0!.83 (0.61 –0.18 ) ≈

(1 j radial), respectively. Similar results are found using0!.58
other bands. These estimates are consistent or better than actual
uncertainties reported by SSC pointing reconstruction software
(#1!.1 absolute in each axis). These account for uncertainty in
the attitude of the telescope boresight system, which includes
jitter due to limit cycle motions and uncertainty in the location
of an off-axis science array due to uncertainty in boresight
twist angle (both "0!.04 rms), time-dependent biases between
the telescope and star-tracker systems (%0!.6 rms over 200 s),
and the relationship between boresight to science array pointing
frame (∼0!.1 rms) (Lawrence et al. 2000).
The source separation distributions after refinement in Figure

9 allow us to validate how well (or whether) images were
refined to within accuracies determined by source extraction
centroids. As found in our simulation (Fig. 5), images were
refined to better than #65 mas (1 j radial) within truth point-
ings, with a corresponding #200 mas dispersion in source
separations after refinement (Fig. 6). The top panel in Figure
10 shows the distribution of uncertainties in radial match sep-
aration (from eq. [15]) as a function of separation r for band
1 after refinement. These are broadly consistent above the min-
imum cutoff uncertainty of ∼100 mas imposed by the finite
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Fig. 9.—Distributions of matched source radial separations before and after refinement for all bands of Spitzer’s IRAC instrument. Relative and absolute
astrometric (with 2MASS magnitudes ) matches have been separated.K ≤ 15s

size of the PSF. The distribution in r at any given uncertainty
cut can also be described by a Rayleigh distribution (seejr
eqs. [16] and [17]). Furthermore, Figure 10 shows that typical
systematic uncertainties due to inaccurately calibrated distor-
tion are minimal and, if present, are expected to be much less
than the centroiding errors. Guided by the simulation in § 3
and Figure 9, we conservatively conclude that the majority of
image pointings must be refined to better #200 mas. In fact,
we can predict the absolute dispersion in image pointings about
truth using equation (13). Given the typical match statistics
listed in Table 1, and centroiding errors of 0!.18 and 0!.27 for

bands 1 and 4, respectively, we expect dispersions of ∼35 and
∼140 mas (1 j radial) about truth for these bands, respectively.
We expect these dispersions to be smaller once centroiding
errors are brought down using better characterized PSFs.
In this case study, the number of astrometric (frame to ab-

solute) matches are factors 1.5–2 times greater than relative
(frame to frame) matches (see Table 1). This is because of the
specific flux-difference thresholds used in source matching (4%
and 50% for relative and absolute matches, respectively; see
above). The results of Figure 9 assumed 2MASS point sources
with . To ascertain the degree to which the number ofK ≤ 15s
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Fig. 10.—Top: Uncertainty in matched source radial separation (from cen-
troid uncertainties of matches) as a function of actual source separation after
refinement for IRAC band 1. Bottom: Same as Fig. 9 for IRAC band 1, but
with astrometric matches having a 2MASS magnitude limit of .K p 10s

absolute matches controls the level of refinement, we repeated
the source matching and refinement for band 1 using a 2MASS
magnitude cut of . The bottom panel of Figure 10K p 10s

shows source separations before and after refinement. The num-
ber of absolutes per frame was randomly distributed between
zero and four (compared to ∼20 relative matches/frame).When
frame-to-absolute separations after refinement are considered
alone (open histogram at bottom left), the mean separation is
smaller by a factor of ∼2, compared to the case (Fig.K ≤ 15s

9, top left panel). This is a result of inherently lower positional

uncertainties for the brighter ( ) sources. When com-K ≤ 10s

bined with relative matches however, the mean source sepa-
ration and hence the level of refinement is essentially unchan-
ged, compared to our results above.

5. DISCUSSION AND CONCLUSIONS
We have presented a generic algorithm to perform astro-

nomical image registration and pointing refinement. It is ge-
neric in the sense that it can be used on any set of astronomical
images that recognize the FITS and WCS pointing standards
(Greisen & Calabretta 2002; Calabretta &Greisen 2002). Either
relative (self-consistent frame-to-frame registration), single im-
age absolute-astrometric, or simultaneous (relative and abso-
lute) refinement is supported. The crux of the method involves
matching point-source positions between overlapping image
frames and using this information to compute image offset
corrections by globally minimizing a weighted sum of matched
point-source positional differences.
To ensure robust registration and refinement, the algorithm

is best optimized with the following criteria:

1. The random uncertainty in measured twist angle of an
individual image frame ( ) is assumed to be small so as todv
ensure . is a good working measure for′sin dv ≈ dv dv " 60
the intended applications of this algorithm [where 1!

].!4(sin dv)/dv " 10
2. Input images have been accurately calibrated for distortion

and possible nonuniform pixel scale. Any position-dependent
systematic offset between source matches will limit the re-
finement accuracy to the size of the systematic error involved.
3. Sufficient area overlap between adjacent image frames is

needed to ensure good match statistics.
4. Availability of point sources with well-defined flux dis-

tribution profiles approaching that of the instrument/detector’s
PSF. Extended sources will lead to larger centroiding errors.
5. Well-characterized PSF(s) for the image(s) at hand. These

are crucial for accurate determination of source extraction cen-
troids. If the inherent telescope pointing uncertainty is of an
order of a third or larger than the detector pixel size, centroiding
accuracies to better than one-tenth of a pixel or resolution
element are recommended. For pointing uncertainties much less
than the pixel size, there is little to be gained in resolution by
improving the registration.
6. With the suggested centroiding accuracy from step 5, at

least five relative (frame to frame) and five absolute source
matches per frame will give pointings refined to better than three-
hundredths of a pixel (rms). The greater the number of matches,
the better the refinement. A minimum of two source matches
per image frame, either relative, absolute, or both, is required to
unambiguously determine all offset parameters per image.
7. Astrometric (absolute) reference sources should be used

wherever possible. These provide a baseline to counteract any
systematic deviations from “truth” or expected pointing in the
ICRS, especially if absolute refinement is desired.
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8. It is assumed that uncertainties in image pointing and
point-source extraction centroids are random and independent.
Prior image pointing uncertainties should be used, if available.
These will prevent erroneous overcorrecting of the pointing for
cases in which it is well known a priori.

Our simulations show that potentially good refinement can
be obtained with minimal requirements. For a large fraction of
images in an ensemble, refinements of better than #65 mas (1
j radial from truth) can be obtained, with an average of ∼10
relative and ∼20 absolute matches per frame with extraction
centroids "0!.2. This amounts to an improvement of 95% rel-
ative to truth for a majority of images. This could be better
with higher match statistics and/or more accurate centroids,
since the 1 j dispersion about truth typically scales as
∼ for a given centroiding uncertainty and num-1/2j (2/N ) jext ext ext

ber of matches .Next
Analysis of observations from Spitzer’s IRAC instrument

shows that the dispersion in source separations after refinement
is entirely consistent with the inherent dispersion in extraction
centroid uncertainties. This implies that systematic uncertain-
ties such as inaccurately calibrated distortions are negligible,
since otherwise, dispersions in matched source separations after
refinement would be larger relative to centroiding errors. Com-
paring dispersions of refined pointings about truth with
matched source separations as found in our simulation, and
rescaling to the appropriate numbers of matches using

scaling, we predict (at the 2 j level) refinements to1/21/Nmatch

better than ∼70 and ∼280 mas for IRAC bands 1 and 4, re-
spectively. These bands bracket two extremes in available
source matches, and these refinement estimates correspond to
∼55 and ∼8 (astrometric and relative) matches per band-de-
pendent frame, respectively.
The goal of astronomical image registration is to exploit the

resolution capabilities of existing and upcoming detectors
whose pointing control and stability may not evolve at the same
rate. The aim is to optimize the achievable S/N and science
return therein. The algorithm presented here is just the tip of
the iceberg for exploring one of many optimization techniques
used in the diverse fields of image and signal processing and
computer vision science.
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APPENDIX A

ELEMENTS OF THE COEFFICIENT MATRIX

In this section, we provide general analytic expressions for elements of the coefficient matrix (eq. [10]). These elements areM
obtained by applying the minimization conditions (eq. [9]) to the cost function defined by equation (7). The “base” coefficient labels
A, B, and C correspond to the three equations obtained by evaluating the partial derivatives in equation (9) (which we call A, B, and
C from left to right, respectively). Position and uncertainty variables appearing in the expressions below were defined in § 2.2.

m m 2 m m 2(y ! y ) (x ! x ) 1i c i cmA p " " ,!! !v m, n m, n 2Dx Dy jn i ni i vm

m m m m(y ! y ) (x ! x )i c i cm mA p ! , A p!! !!X Ym, n m, nDx Dyn i n ii i

m m n n m m n n(y ! y )(y ! y ) (x ! x )(x ! x )i c i c i c i cnA p ! " ,!!v m, n m, nDx Dyn i i i

m m m m(y ! y ) (x ! x )i c i cn nA p , A p !! !X Ym, n m, nDx Dyi ii i
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m m1 1 (y ! y ) 1i cm m m n nB p A , B p " , B p , B p !!! ! ! !v X X v Xm, n 2 m, n m, nDx j Dx Dxn i n i ii Xm i i

n n1 1 (x ! x ) 1i cm m m n nC p A , C p " , C p ! , C p !!! ! ! !v Y Y v Ym, n 2 m, n m, nDy j Dy Dyn i n i ii Ym i i

m m n m m m m n(y ! y )(x ! x ) (x ! x )(y ! y )i c i i i c i imW p ! " ,!!A m, n m, nDx Dyn i i i

m n m n(x ! x ) (y ! y )i i i im mW p ! , W p ! .!! !!B Cm, n m, nDx Dyn i n ii i

APPENDIX B

THE ERROR-COVARIANCE MATRIX

Fig. 11.—Gray-scale representation of covariance matrices for all orthogonal
and rotational offsets in IRAC test case when absolute astrometric matches
are used. See eq. (B2) for matrix definition.

The full error-covariance matrix is one of the byproducts of
the POINTINGREFINE software. This reports all variances and
covariances for and between all (inter and intra) image offsets
that are necessary for refinement from the global minimization.
It can be used to explore the strength of long-distance
correlations between images in a mosaic and the presence of
any undue systematic walks after refinement. The latter could
arise if one lacks the desired number of absolute astrometric
sources or the correct magnitude of prior image pointing
uncertainties, as was discussed in § 2.3.
For a given pair of images ( ) and three computed offsetsi, j

per image ( ), we have a total of six possibledv, dX, dY
(correlated) offset pairs or covariance matrices. The possible
covariances (or variances if for the same offsets) for anyi p j
two images are therefore

Cov (v , v ), Cov (v , X ), Cov (v , Y ),i j i j i j

Cov (X , X ), Cov (X , Y ), Cov (Y , Y ). (B1)i j i j i j

If we define any of these covariances generically as
then the format for the error-covariance matrix forCov (a , b )i j

all possible image pair combinations ( ), where (i, j i p
), is1, 2 … m; j p 1, 2 … m

Cov (a , b ) pi j

Cov (a , b ) Cov (a , b ) … Cov (a , b ) 1 1 1 2 1 m

Cov (a , b ) Cov (a , b ) … Cov (a , b )2 1 2 2 2 m . (B2)… … … … 
Cov (a , b ) Cov (a , b ) … Cov (a , b ) m 1 m 2 m m

Figure 11 shows gray-scale representations of covariance
matrices for all combinations of offset parameters (eq. [B1])
for the 105 image IRAC test case, assuming both relative and

absolute astrometric source matches in the refinement. With
105 images, each covariance matrix has elements105# 105
(or pixels, in this representation). It is important to note that
the cross-correlation between different offset types is not
symmetric. For instance, the correlation between and isv Xi j

not the same as and . Figure 12 shows the same set, butv Xj i

with only relative (frame to frame) matches used for the
refinement. Comparing Figures 11 and 12, we draw the
following conclusions: first, for the case including astrometric
matches, “long distance” correlations in image offsets are
greatly reduced. This is the result of astrometric sources
anchoring each image to the fiducial reference frame, making
them more independent of each other. The covariance matrices
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Fig. 12.—Gray-scale representation of covariance matrices for all orthogonal
and rotational offsets in IRAC test case when absolute astrometric matches
are not used (i.e., only relative frame-to-frame matches used). See eq. (B2)
for matrix definition.

become essentially block-diagonal. Second, uncertainties
(variances along the diagonal for the same offset pair
combination) are greatly attenuated when astrometric matches
are used compared to the relative-only match case. There are
greater numbers of degrees of freedom per image when
astrometrics are included, and this reduces the relative
uncertainty.
The relative-only case exhibits greater long-distance

correlations (larger off-diagonal values), since image positions
are dictated solely by frame-to-frame matches in image overlap
regions. This makes each successive image position dependent
on its nearest neighbor positions, which depend on their own
neighbors, and so on throughout the system of linked images.

Apart from astrometric matches reducing long-distance
correlations, this can also happen if prior image pointing
uncertainties are intrinsically smaller. Small priors will pull
refinement offsets from the global minimization toward zero,
which minimizes the term in equation (4). The priorsL a priori
force a constraint on each individual image to prevent
“overrefinement,” regardless of the number of source matches
present. Each image therefore becomes more independent of
its neighbors, and long-distance correlations are reduced.
We also note the rich and diverse patterns in the covariance

matrices for this observation, especially the relative-only case
(Fig. 12). These are characteristic of the image layout and
mosaic map geometry (see Fig. 8). Take, for instance, the

matrix in Figure 12. The checkerboard patternCov (Y , Y )i j

arises from the relative image numbering in the map and how
this translates to the numbering of elements in the covariance
matrix (eq. [B2]). In the mosaic, the images repeat from right
to left to create a leg, then left to right and down again, for a
total of seven legs. Adjacent image pairs ( ) along verticali, j
sections in the map are strongly correlated in their ( )Y , Yi j

offsets, while widely separated images are less correlated. For
instance, image 1 at top right has its Y offset strongly correlated
with the Y offsets of images directly below it (i.e., image
numbers 30, 31, 60, 61, 90, and 91). The high correlations are
therefore with every ∼30th image giving bright regions in the
gray-scale covariance image. In addition, the Y offset of image
1 is least correlated with that of images in the far left vertical
strip (images 15, 16, 45, 46, 75, 76, and 105), resulting in dark
regions in the covariance image.
In the end, one purpose of the covariance matrix is to

visualize the degree of correlation between image positions in
the ensemble as a whole. This allows one to ascertain whether
refinement solutions are driven by any particular invalid input
assumptions (e.g., priors), or insufficient astrometric reference
source information, if robust absolute refinement is desired.
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