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ABSTRACT

We explore the projected distribution of galaxy counts-in-cells at 24 microns

in three fields of the SpitzerWide-area InfraRed Extragalactic (SWIRE) program:

ELAIS-N1 (EN1), ELAIS-N2 (EN2) and a subregion in the Lockman-Hole (LH)

field. The samples cover contiguous areas of respectively ' 8.62, 3.98 and 6.60

deg2 and contain 12040, 4979 and 8633 sources detected at 24µm to a mean

' 9σ limit of 450µJy. Counts are performed in circular cells of angular diame-

ter 0◦.05 to 0◦.7 corresponding to comoving spatial scales of '1.8-26h−1Mpc at

the expected median redshift of z ' 0.9. Statistics are analyzed in full sam-

ples and subsamples defined by flux-density ratio cuts: f24µm/f3.6µm 6 5.5 and

> 6.5, which are refered to as the blue and red subsamples respectively. The

count distributions fit the form predicted by the quasi-equilibrium gravitational

clustering model with values of the virialization parameter b = −W/2K ap-

proaching 0.42-0.55 on the largest scales probed, consistent with studies in the
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optical. We also measure the angular variance and skewness from the galaxy

distributions and from these, estimate area-averaged two and three-point correla-

tion functions: w̄2(θ) and w̄3(θ) respectively. The “cosmic variance” in clustering

strength amongst the three fields, as measured by the relative RMS deviation in

w̄2(θ) is ' 18%. Statistically significant non-Poission and non-Gaussian behav-

ior is seen on all scales > 0◦.1 where both positive and negative skewnesses are

detected. For the EN1 field only, the skewness and variance marginally satisfy

the prediction for hierarchical gravitational clustering in the linear to mildly non-

linear regime, w̄3(θ) = S3w̄
2
2(θ), where S3 = 3.3± 1.2 independent of scale. The

skewness estimates are too noisy and unreliable in the EN2 and LH fields to

test this prediction. The traditional power-law fit parameters to the differen-

tial two-point function, w2(θ) = Aθ1−γ , are estimated from an inversion of the

area-averaged functions. We find that the blue subsamples have amplitudes (A)

greater by factors of 1.5-20 than the red or full samples. This is consistent with

the blue galaxies being located predominately at low-z, where dilution to their

three-dimensional clustering by projections is diminished. Using model redshift

distributions consistent with source counts, and assuming stable clustering, we in-

vert Limber’s equation and find spatial comoving correlation lengths of r0 ' 4.35

to 4.86h−1 Mpc across all fields. Overall, the r0 values for 24µm selected galaxies

are smaller than those derived from optical surveys, but in agreement with results

from IRAS and ISO in the mid-infrared. This extends the notion to higher red-

shifts that infrared selected surveys show weaker clustering than optical surveys.

Subject headings: galaxies: statistics — infrared: galaxies — surveys — large-

scale structure of universe.

1. Introduction

The large scale structure (LSS) of the Universe is believed to be determined by phys-

ical processes that took place long before recombination. A simple case is that in which

the density fluctuations are approximated by a random Gaussian process. According to the

classical inflationary scenario, Gaussian perturbations are expected to originate from quan-

tum fluctuations of a scalar field with a variance which is scale invariant (e.g., Olive 1990,

and references therein). This picture is consistent with recent measurements of the Cosmic

Microwave Backbground (CMB) with WMAP (Spergel et al. 2003; Komatsu et al. 2003)

where non-Gaussian primordial fluctuation models are ruled out with a high degree of confi-

dence. Even without inflation, the Central Limit Theorem guarantees that the superposition
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of a large number of random processes in the early Universe will be Gaussian distributed.

As perturbations grow by gravitational instability, an initially Gaussian distribution will

remain Gaussian as long as the fluctuations remain in the linear regime where δρ/ρ ¿ 1.

Once non-linear effects become important (e.g., gravitational collapse and star formation),

the distribution will deviate from its initial Gaussian state. Evolution to a non-Gaussian

distribution is also expected in the framework of “biased” models of galaxy formation (Kaiser

1984; Bardeen et al. 1986), where galaxies are identified with those peaks of the underlying

Gaussian matter distribution which exceed some threshold. One therefore hopes that obser-

vations of LSS to intermediate redshifts can be used to constrain physical conditions in the

early Universe and its development to non-Gaussianity in the galaxy distribution.

The traditional two-point correlation function estimator, ξ2, has been used extensively

to quantify the clustering pattern of galaxies (Peebles 1980). This is related to the second

moment (or variance) of the corresponding galaxy count distribution. This estimator is

limited in that it exhausts only the statistical content of a distribution which is purely

Gaussian in nature. To measure higher-order statistics and characterize non-Gaussianity as

predicted by non-linear growth of structure, a more general method is needed. The method

of counts-in-cells (Hubble 1934; White 1979; Bernardeau et al. 2002) provides the full galaxy

count distribution function within a cell of given size (either in volume or projected on

the sky) from which all higher-order moments and n-point correlations can be derived. Its

normalized version, the galaxy count probability distribution function (CPDF) gives the

probability of finding N galaxies in a randomly placed cell. Numerous authors have used

moments of the CPDF to gain more accurate information on the higher-order correlations

ξn (Balian & Schaeffer 1989; Saunders et al. 1991; Coles & Frenk 1991; Szapudi et al. 1992;

Gaztañaga 1994). These studies calculated the second and third moments of the number

density, showing that scaling relations between them are consistent with the expectations of

a gravitational clustering hierarchy, i.e., the so called hierarchical model where ξ̄n ∝ ξ̄n−1
2 .

The moments of the CPDF are related to volume-averaged (ξ̄n) or in the case of a projected

catalogue, area-averaged n-point correlation functions (w̄n). These can be inverted to obtain

the n-point amplitude, smoothed on a scale defined by the CPDF cell size. The advantages of

using the CPDF to infer n-point statistics over traditional direct binning methods (e.g., which

compute the two-point estimator) are that first, the data do not require binning; second,

the CPDF method has better signal-to-noise ratio properties, since statistics are generally

better when sampled and averaged over larger regions; third, no random comparison sample

is needed; and fourth, systematic effects from catalogue boundaries and finite sampling, i.e.,

the “integral contraint” bias, are more easily handled (e.g., Infante 1994).

Various authors have explored models to describe the observed galaxy CPDF. Saslaw &

Hamilton (1984, hereafter SH84) constructed a discrete thermodynamic model of the CPDF
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parameterized in terms of the ratio b = −W/2K, representing the volume-averaged gravi-

tational correlation energy to kinetic energy of peculiar velocities in a gravitating system.

Other theoretical distributions are the discrete negative-binomial model (Carruthers & Shih

1983), a hierarchical scaling ansatz (Schaeffer 1985), the lognormal distribution (Coles &

Jones 1991) and the Edgeworth expansion representation (Juszkievicz et al. 1995). See Bor-

gani (1996) for a review of their strengths and weaknesses. Due to the widespread success

of the SH84 model in representing the observed CPDF of galaxies in optical and infrared

surveys (e.g., Sheth et al. 1994), we primarily use this model to compare with the results of

previous studies.

Galaxy surveys at optical and infrared wavelengths have revealed the rich structure

of the local Universe on large scales through the two-point correlation function estimator,

or equivalently its power spectrum: e.g., CfA (Huchra et al. 1983); APM, (Maddox et al.

1990); EDSGC, (Szapudi et al. 1996); 2dFGRS (Colless et al. 2001; Peacock 2003); and

IRAS, (Fisher et al. 1994; Saunders et al. 1992; Bouchet et al. 1993). Interestingly, it was

found that the Root Mean Square (RMS) fluctuation in the distribution of IRAS galaxies on

8h−1Mpc scales is smaller than that of optically selected galaxies by a factor ∼ 0.65 (Moore

et al. 1994). This is also consistent with the finding that infrared galaxies have smaller

correlation lengths on average than in the optical. By computing the spatial variance from

galaxy counts-in-cells, Efstathiou et al. (1990) were able to rule out the standard (Ω = 1)

cold dark matter model to a high degree of confidence. More recently, analysis of galaxy

clustering is being extended to redshifts z ' 0.5 − 1 in the optical with the SDSS (York

et al. 2000; Zehavi et al. 1994) and the near-infrared (3.6-8.0µm) with Spitzer (Fang et al.

2004; Oliver et al. 2004; Waddington et al. 2005). Gonzalez-Solares et al. (2004) provided a

first estimate of clustering in the mid-infrared (15µm) from the ELAIS-S1 survey with ISO

to a median redshift of z ' 0.2. Their results are consistent with the IRAS findings. Deeper

surveys are now being conducted in the mid-infared (24µm) with Spitzer to allow studies of

the distribution of infrared-luminous galaxies to redshifts z ' 1.5.

The Spitzer Wide-area Infrared Extragalactic legacy program (SWIRE; Lonsdale et al.

2003, 2004) is one such survey. This is expected to detect over two million galaxies at infrared

wavelengths from 3.6 to 160µm over six fields covering 49 deg2. The survey is intended to

study galaxy evolution, the history of star formation and accretion processes, and due to

its large sampled volume, how these are influenced by galaxy clustering and environment

on all scales. We focus on three fields in this study: the ELAIS-N1 (EN1), ELAIS-N2

(EN2) and a contiguous region in the Lockman-Hole (LH) field. The EN1 and EN2 fields

were originally part of the European Large-Area ISO program (Rowan-Robinson et al. 1999)

and cover ' 8.62 and ' 3.98 deg2 respectively. The LH sub-field used in this study covers

' 6.60 deg2 and was originally discovered by Lockman et al. (1986) to contain the smallest
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known amount of galactic HI, making it ideal for extragalactic observations. These are the

first SWIRE fields containing the largest validated multi-wavelength imaged regions: from

high quality ground-based imaging in the optical (U, g′, r′, i′, Z), to imaging with Spitzer

in the IRAC and MIPS bands (3.6, 4.5, 5.8, 8.0, 24, 70 and 160µm). Shupe et al. (2005)

presented a detailed analysis of 24µm galaxy counts in the EN1 field, and by performing

counts in subfields of ' 1.5 deg2, found that the Euclidean-normalized counts varied by at

least 10% at flux densities & 1mJy. Significant “cosmic variance” was also seen by comparing

these counts to those from other fields (e.g., Marleau et al. 2004; Papovich et al. 2004). These

discrepancies are most likely due to the effects of galaxy clustering on large scales.

In this paper, we present initial results of galaxy clustering at 24µm by analyzing statis-

tics of the projected galaxy distribution using the counts-in-cells method. This study is the

first of its kind at this wavelength and sensitivity, reaching a factor of ' 700 deeper in flux

density than the IRAS 25µm galaxy surveys. We explore clustering statistics as a function of

3.6−24µm color and explore their variation across three separate fields to estimate the level of

cosmic variance. We compare distributions of counts-in-cells with the quasi-equilibrium grav-

itational clustering model of SH84 and constrain the dimensionless parameter b = −W/2K

as a function of angular scale. We focus on the second and third moments of the galaxy dis-

tribution (variance and skewness) and use these to test qualitatively the hierarchical model.

We estimate two-point correlation amplitudes from a power-law inversion of the angular-

averaged variance from counts-in-cells that uses the full error-covariance matrix between

angular bins. These are then deprojected using model redshift distributions and Limber’s

(Limber 1953) equation to obtain estimates of three-dimensional clustering for all samples.

This paper is organized as follows. § 2 describes the observations, samples, completeness

and star-galaxy separation. § 3 presents a summary of the counts-in-cells method, statistical

measures and error estimation. § 4 presents counts-in-cells results, an analysis of systematics

from finite sampling, and distribution function model fits. § 5 presents results of power-law

fits to the angular two-point correlation function for all samples and compares the two and

three-point angular-averaged statistics to predictions of the hierarchical model. § 6 presents

the deprojection of our angular two-point statistics to infer the three-dimensional clustering,

and results are discussed and compared to previous studies. A summary and concluding

remarks are given in § 7. We assume a spatially flat Friedmann-Robertson Walker Cosmology

throughout with Ωm = 0.3 and ΩΛ = 0.7. Unless otherwise stated, Hubble’s constant is

scaled according to h = H0/100 km s−1Mpc−1.
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2. Observations, Processing and Sample Selection

The SWIRE EN1, EN2, and LH (sub-region) fields are centered at (RA, Dec; J2000)

= (16h11m15s, 55◦4′24′′); (16h36m36s, 40◦59′11′′) and (10h42m23s, 58◦21′21′′) respectively,

and by design, are located in regions of moderately low cirrus noise and background where

I100µm . 0.5MJy sr−1 (Lonsdale et al. 2003). These fields were observed with the Multi-

band Imaging Photometer for Spitzer (MIPS) and the InfraRed Array Camera (IRAC) in-

struments during 2004 January, 2004 July, and 2004 April-May respectively. The MIPS and

IRAC instrument performances are described by Rieke et al. (2004) and Fazio et al. (2004)

respectively. The nominal coverage (redundancy) per pixel for the MIPS-24µm observations

is 40, although it varied from about 30 at the boundaries to a maximum of 74 over the

central regions of the fields (see Figure 1). This gave a nominal total integration of 160 s per

pointing, yielding a nominal 24µm RMS sensitivity of ' 56µJy. All Basic Calibrated image

Data (BCD) products are available from the Spitzer Science Center (SSC) Archive under

programs (PIDs) 185, 183 and 142 for EN1, EN2 and LH respectively. All full field mosaics,

bandmerged Spitzer data and optical cross-identifications are available from the Spitzer pop-

ular products archive7. The data used in this paper comprise the second incremental release

of SWIRE products. A description of all products, data processing and analysis is given in

Surace et al. (2005).

2.1. Selection Function, Completeness and Reliability

We distinguish between two types of “selection function” which we quantify in terms of

the completeness of a sample. First, that introduced by the finite resolution of a detector and

other instrumental signatures or artifacts affecting source detection (e.g., bad pixels, bright

stars) and second, that due to the flux limit of the sample which limits detectability across

the full luminosity range as a function of redshift. The latter is important for estimates of

spatial clustering and will be considered in § 6. In this section, we focus on the intrumental

limitations.

The relatively small (0.86 m) size of the Spitzer primary mirror limits the spatial resolu-

tion to relatively large beams compared to ground-based telescopes. The beamsize at 24µm

is 5.8′′. Confusion due to overlapping beams of unresolved faint sources therefore becomes a

significant source of incompleteness. The completeness level of the initially extracted 24µm

samples was estimated using the EN1 field where 130,000 simulated sources were added to a

7http://data.spitzer.caltech.edu/popular/swire/
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Fig. 1.— 24µm coverage maps and geometries for three SWIRE fields: ELAIS-N1 (EN1),

ELAIS-N2 (EN2) and a subfield of the Lockman-Hole (LH) field. The 3.6-24µm bandmerged

sources (shown as dots) are selected from regions enclosed by the grey boundaries where the

coverage is & 37 pixels. Dark striped patterns correspond to coverages of & 60 and the

brightest stripes to coverages of . 47. The full LH field is actually composed of two mosaics

and only the coverage-map containing the largest contiguous portion is shown.
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high coverage 5.34 deg2 central region. This number of sources corresponds to ' 200 beams

per source. These sources were then extracted using the SExtractor software with a Gaus-

sian filter (which was found to be more robust against spurious detections) and matched

against the input simulated list (see Shupe et al. 2005, for details of the method). The

fraction of simulated sources recovered with flux densities >450µJy (' 9σ) was > 99%. This

is consistent with comparisons to counts in two deeper fields within EN1 where the fainter

SWIRE sources are detected with much higher confidence. One was taken as part of the

Spitzer Extragalactic First Look Survey (FLS) program (Marleau et al. 2004) and covers 54

square arcminutes to a depth of ' 90µJy (scaled to 9σ), and another is the Spitzer-GOODS

Validation Field covering 165 square arcminutes to ' 54µJy (9σ). There is very good agree-

ment between the fluxes from all studies down to 200µJy (' 4σ for SWIRE), where the

completeness from our simulation was & 90%.

Any significant variation in the completeness on scales of interest will manifest itself

as an artificial clustering signal. Variations in sky coverage lead to fluctuations in local

noise, thus affecting source detectability and reliability. Given our high completeness level

however, we can be confident that it is also uniform (on average) across each of the fields.

For all fields, the 24µm detections were limited to regions with coverages of & 37 pixels as

defined by the dashed boundaries in Figure 1. Of all 24µm detections in the EN1 field for

example, ' 98.5% were found to be centered on coverages with & 40 pixels. The effective

RMS noise over these regions for a coverage of Nc pixels scales as σ ' 50
√

50/NcµJy. For

a coverage range 37 . Nc . 73, our 450µJy flux limit therefore implies a SNR range of

7.7 . SNR . 10.8, with a mean of ' 9σ corresponding to 〈Nc〉 ' 50 pixels. We have

therefore adopted a simple but conservative selection function. Our 450µJy flux limit shows

that even in regions of higher than average noise (low coverage), the minimum SNR of ' 7.7

still puts us at a very high completeness level where most detections can be considered

reliable (see below) and independent of position in our maps.

As evaluated by Shupe et al. (2005) for the EN1 field, and as discussed in the SWIRE

Second Data Release document (Surace et al. 2005), the spurious (unreliable) source fraction

is expected to be . 0.5% at f24µm > 450µJy. In fact, to minimize the incidence of spurious

(unreliable) 24µm extractions, we have retained only those 24µm sources which were also

detected by IRAC at 3.6µm above a flux limit of 10µJy. This limit corresponds to SNR ' 10σ

in the lowest coverage (noisiest) regions of the IRAC maps, and the overall noise range is

0.63 . (σ/µJy) . 1.00 (Surace et al. 2005). The fraction of 24µm sources with multiple

3.6µm matches was very low (' 0.07% in EN1). The 24-3.6µm bandmerge reliability was

estimated from cumulative distributions of positional offsets (Surace et al. 2005). For over

99% of the merges with fluxes greater than the limits quoted above, matches within 3′′ can

be considered reliable. In the EN1 field, the fraction of initially extracted 24µm sources
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with no 3.6µm detection (which were eventually discarded) in the IRAC+MIPS mapped

common-overlap region was ' 0.17%.

2.2. Star-Galaxy Separation

Stars will weaken the inferred galaxy clustering signal and must be removed. Stars

are not expected to be a major contributor in our samples since all fields are located at

moderately high galactic latitudes: 42◦ . b . 52◦. The stellar contamination is also ex-

pected to be low at 24µm since we are sampling the Rayleigh-Jeans tail of the spectral

energy distribution of most stars. Conservatively speaking, the dominant stellar popula-

tion has effective photospheric temperatures > 2000 K, corresponding to peak wavelengths

. 2.5µm (e.g., Lada 1987). For T > 2000 K, Rayleigh-Jeans scaling predicts a flux den-

sity ratio fν(24µm)/fν(3.6µm) < 0.06, although we cannot rule out the possibility of excess

non-photospheric emission (e.g., by dust), however low, at mid-infrared wavelengths, thereby

increasing this ratio. Radiative transfer calculations by Kurosawa et al. (2004) do indeed in-

dicate that near-to-mid-infrared colors can be substantially redder by an order of magnitude

than blackbody predictions. Conservatively speaking, even assuming blackbody tempera-

tures T > 2000 K and our sample limit of f(24µm) ' 450µJy predicts 3.6µm flux densities

& 7300µJy (see bottom panel in Figure 2), well above our 3.6µm detection limit used to

ensure reliability. Stellar contamination in our samples therefore cannot be ruled out.

We have used two criteria based on the flux density ratio C = fν(24µm)/fν(3.6µm),

3.6µm flux density, and 3.6µm stellarity index to classify and flag potential stellar candidates:

C 6 0.5 & fν(3.6µm) > 500µJy & 3.6µm stellarity > 0.9 (1)

or

C 6 3.8 & fν(24µm) > 7× 103µJy. (2)

Criterion 1 uses the 3.6µm stellarity index as output by the SExtractor software. This

ranges from 0.0 for significantly extended sources to 1.0 for those with perfectly stellar Point

Spread Functions (PSFs). We picked a threshold of 0.9. Figure 2 shows the ratio C as a

function of 3.6µm and 24µm flux densities for the EN1 field. From an examination of the

distribution of sources in these diagrams, we see that there are two distinct populations, one

of which we declare to be stars from visual examination. Coupled with the stellarity index

in criterion 1, we also find that the populations can be more-or-less separated by the further

criteria: C 6 0.5 and fν(3.6µm) > 500µJy. These are in accord with expectations for the

general stellar population discussed earlier.
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Fig. 2.— Ratio of flux densities f24/f3.6 versus 24µm flux density (top) and 3.6µm flux density

(bottom) for the EN1 field. Sources marked with a “+” are flagged as stellar (see § 2.2).
Dashed horizontal lines represent f24/f3.6 = 0.5, the vertical solid line in the bottom panel

represents fν(3.6µm) = 500µJy and the boxes delineate those sources near or at the 3.6µm

saturation limit which renders the stellarity index unreliable. These sources are identified as

stars on visual examination.
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We find that the 3.6µm stellarity index correlates strongly with flux density in our

samples, but the stellarity becomes unreliable for sources at or near the 3.6µm saturation

limit. SExtractor classifications become degenerate when attempting to separate these from

extended sources. These sources are delineated by boxes in Figure 2 and are at the bright

end of flux distribution. On visual examination, these sources are identified with bonafide

stars. Such sources are found to satisfy Criterion 2. We have fine tuned the stellar criteria

(1 and 2) using predominately data from EN1 since this is the largest of all fields with good

3.6-24µm bandmerge statistics. Excellent independent agreement was found using data from

the EN2 and LH fields.

The small squares in Figure 2 indicate those sources which only satisfy the second

two conditions in Criterion 1 (i.e., with no cut on C). Such sources are likely to include

a large proportion of galaxies with C & 0.5 and their high stellarity indices indicate that

they are predominately unresolved. All sources classified as stellar by Criteria 1 and 2 were

visually inspected for confirmation. We found that ' 2.9% of all reliable (3.6µm detected)

24µm sources above 450µJy in each field were classified as stellar and discarded. These are

indicated by a “+” in Figure 2. It is also interesting to note that the stellar fraction reported

in other 24µm Spitzer surveys at approximately the same galactic latitudes and depth is of

order 4-8% (e.g., Marleau et al. 2004; Yan et al. 2004). These studies used a single stellar-

flagging criterion based on discarding sources with R-band optical stellarity index > 0.8, and

it’s possible that the stellar fraction was overestimated.

Figure 3 is an effective “color-color” plot using the addition of IRAC 4.5µm band de-

tections with flux densities > 10µJy (minimum local SNR of ' 5σ) in the EN1 field. Stellar

candidates from criteria 1 and 2 are shown by grey squares. Overplotted are the tracks

expected of a S0 and old elliptical galaxy (E) for redshifts z = 0-1 from the SED template

library of M. Polletta et al. (2005, in preparation). See also Lonsdale et al. (2004) for the

tracks of a number of other galaxy templates. Even though the locus of E/S0-type galax-

ies overlap with the location of candidate stars, the stellar criteria are stringent enough to

avoid extended sources (i.e., galaxies) from being mistakingly classified as stars. Even more,

typical ellipticals (with 3.6µm emission dominated by old stars) will drop out of a 24µm

flux limited (> 450µJy) sample at z & 0.08. Therefore if seen, such galaxies are likely to be

resolved and extended. As seen in Figures 2 and 3, there is indeed a population of sources

with fν(24µm)/fν(3.6µm) < 0.5 which do not satisfy the stellar criteria. These comprise

' 7% of all sources below this color cut (and incidentally have fν(3.6µm) > 500µJy) which

on visual examination at 3.6 and 4.5µm, are resolved and extended. In conclusion, our stellar

classification scheme is likely to be very reliable.
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Fig. 3.— Effective “color-color” plot represented by flux density ratios f24/f3.6 versus f4.5/f3.6
for the EN1 field. Tracks of a typical S0 and 13 Gyr E-type galaxy SED within 0 6 z 6 1 in

increments ∆z = 0.05 are labelled (from the SED template library of M. Polletta et al. 2005,

in preparation). Grey boxes are sources classified as steller. Most sources at f24/f3.6 6 0.5

which do not satisfy the stellar flagging criteria are resolved and bright at 3.6µm with fluxes

> 500µJy (see bottom panel of Figure 2).
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2.3. Sample Definitions

After discarding stellar candidates and all unreliable 24µm detections (i.e., with no

3.6µm association above 10σ), final statistics for all 24µm field samples are summarized in

Table 1. Note that a deeper version of the EN1 full-sample covering slightly larger area

was used by Shupe et al. (2005) to study galaxy-counts. The samples used here have been

optimized to measure galaxy clustering by using maximal contiguous areas of fixed (higher)

minimum coverage, and using higher SNR cuts at 24 and 3.6µm to ensure high and uniform

completeness and reliability levels.

Since we will also explore clustering as a function of f24µm/f3.6µm flux ratio (effectively

observed-frame near-to-mid-infrared color), we have subdivided each full sample into two

broad subsamples defined by the flux ratio cuts: f24/f3.6 6 5.5 and f24/f3.6 > 6.5. We refer

to these as the blue and red subsamples respectively.

3. Counts-in-Cells Formalism

The galaxy count probability distribution function (CPDF or counts-in-cells distribu-

tion) gives the probability of finding N galaxies in a cell of a particular size and shape.

Its moments have been used extensively to quantify the clustering pattern of galaxies (e.g.,

White 1979; Peebles 1980; Borgani 1996). In principle, the counts-in-cells distribution is

straightforward to compute. One typically throws a number of cells of fixed volume at ran-

dom within the survey boundaries, counts the number of galaxies in each cell and histograms

the results. With no loss of generality (and as used in this study), the counts-in-cells can also

be performed within projected cells subtending a solid angle Ω. In this section, we outline

the counts-in-cells approach, statistical measures and notation, and how the area-averaged

n-point correlations are related to moments of the counts-in-cells distribution.

3.1. A Physically Motivated Galaxy CPDF Model

To interpret the statistics and shape of galaxy distribution functions in terms of physical

clustering, we will compare our results to the discrete thermodynamic model of Saslaw &

Hamilton (1984, hereafter SH84). See also Saslaw et al. (1990) and Saslaw & Fang (1996)

for refinements thereof. This has attained widespread success in representing the observed

CPDF in both 3-D and 2-D (projected) catalogs, such as the Zwicky catalog (Crane & Saslaw

1986), the CfA slice (Crane & Saslaw 1988), the UGC and ESO catalogs (Lahav & Saslaw

1992), the IRAS catalog (Sheth et al. 1994) and the Southern Sky Redshift Survey (SSRS,
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Fang & Zou 1994). It has also been successfully applied to N -body simulations (e.g., Itoh

et al. 1988), where it was shown that the model distribution function can describe both the

3-D spatial distribution and the projected distribution with the same value of the model

parameter b (see below).

The theoretical CPDF, f(N), of SH84 describes a statistically homogeneous system of

point objects interacting under gravity in a quasi-equilibrium state:

f(N) =
N̄(1− b)

N !

[

N̄(1− b) +Nb
]N−1

e−[N̄(1−b)+Nb], (3)

where N̄ is the mean number of galaxies in a projected cell (e.g., see eq. [11]) and

b = −W

2K
(4)

is the ratio of gravitational potential energy (or “correlation energy” as quoted by SH84) to

twice the kinetic energy of peculiar velocities vi,

K =
1

2

N
∑

i=1

mi v
2
i , (5)

where mi is the mass of a galaxy member.

This model CPDF is therefore parameterized in terms of a single parameter b. For an

uncorrelated (non-interacting) system of galaxies, b = 0, and equation (3) reduces to the

well known Poisson formula:

f(N) =
N̄N

N !
e−N̄ . (6)

As the system relaxes and galaxies form into virialized clusters, b→ 1. For some N > 0, we

see that f(N)→ 0 as b→ 1 unless we consider increasingly large volumes such that N̄ →∞
and N̄(1 − b) → constant. This is the virial limit and describes a hierarchy of clusters all

in virial equilibrium. For virialized systems, the distribution represented by equation (3)

therefore requires sampling over large volumes (or projected area) to ensure that N̄(1 − b)

has converged to a constant value.

3.2. Angular Correlation Functions

Since we will be measuring angular (or projected) correlation functions, we briefly re-

view these first. The two-point angular correlation function w2(θ) is defined from the joint
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probability dP2 that two galaxies are centered in each of the elements of solid angle dΩ1 and

dΩ2 at angular separation θ = θ12:

dP2 = n̄2 [1 + w2(θ)] dΩ1dΩ2, (7)

where n̄ is the mean surface density of galaxies. w2(θ) therefore measures the “excess”

probability of finding two galaxies in dΩ1 and dΩ2 above that predicted by random (Poisson)

sampling: (' n̄2dΩ1dΩ2). Following popular convention, we assume in this paper that w2(θ)

can be parameterized as a power-law, with θ measured in degrees:

w2(θ) = Aθ1−γ , (8)

where A is the correlation amplitude and γ the slope.

The three-point angular correlation function w3(θ123) is defined from the joint probabil-

ity that three galaxies are found in the solid angle elements dΩ1, dΩ2 and dΩ3:

dP3 = n̄3 [1 + w2(θ12) + w2(θ13) + w2(θ23) + w3(θ123)] dΩ1dΩ2dΩ3. (9)

The first term in equation (9) is the Poisson term, and accounts for uncorrelated triplets

that may appear clustered just by chance or because of projection. The next three terms

correspond to a combination of a correlated pair with an uncorrelated galaxy that forms a

triplet also by chance or projections. The last term corresponds to true clustering, repre-

sented as an “excess” joint probability above all possible random associations. By studying

w3(θ123), we therefore avoid artificial clustering from projection effects.

3.3. Moments and Area-averaged Correlation Functions

The pth moment about the mean of the galaxy counts-in-cells distribution, can be written

µp = 〈
(

N − N̄
)p〉 =

∞
∑

N=0

PN(Ω)
(

N − N̄
)p
, (10)

where N̄ = n̄Ω is the mean count in the solid angle Ω for some mean density n:

N̄ =
∞
∑

N=0

NPN(Ω), (11)

and PN is the (discrete) normalized galaxy count probability distribution function (CPDF)

of the underlying population, computed from randomly placed cells of size Ω. In practice,

one only has a finite sampling of the underlying population, so that the true PN is not known
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apriori, unless the survey region under consideration is infinitely sampled. In this case, it is

more accurate to use unbiased estimators for the population moments. This arises from the

fact that N̄ (≈ n̄Ω) is computed empirically from the same sample from which the moments

are estimated. The sample mean and unbiased estimators of the second and third moments

are given by:

N̄ =
1

NT

NT
∑

i=1

Ni,

µ2 =
1

NT − 1

NT
∑

i=1

(

Ni − N̄
)2
,

µ3 =
NT

(NT − 1)(NT − 2)

NT
∑

i=1

(

Ni − N̄
)3
, (12)

where NT is the total number of randomly drawn cells which fall within the catalog bound-

aries (Kenney & Keeping 1962). The last two expressions in equation (12) are also known as

the population variance and skewness respectively. These corrections for finite sample bias

become important when the total number of cells thrown, NT , is small. For our purposes,

we typically have 1000 < NT < 2250 for the range of cell sizes considered (see § 4), so that

this estimation bias only accounts for at most 0.1%. Other biases due to finite sampling are

discussed in § 4.1. The moments derived from equation (12) are valid only if N̄ À 1 or as

one approaches the continuum limit. Owing to discreteness however, the moments µp must

be corrected for (Poisson) shot-noise. In this limit, the first few moments, kp, of discrete

counts are related to µp as follows (e.g., Gaztañaga 1994):

k2 = µ2 − N̄ ,
k3 = µ3 − 3k2 − N̄ ,
k4 = µ4 − 7k2 − 6k3 − N̄ . (13)

The p-point area-averaged angular galaxy correlation function, w̄p(Ω), can be written

in terms of a multi-dimensional integral of the p-point differential angular correlation wp(θ),

over the sampling area, Ω (Peebles 1980):

w̄p(Ω) =
1

Ωp

∫

Ω

dΩ1 . . . dΩpwp(θ1, . . . , θp), (14)

The w̄p are related to the corresponding discrete moments, kp, of the CPDF through

kp = N̄pw̄p(Ω). (15)
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Using equations (13) and (15), the two and three-point area-averaged correlation functions

for instance can be written:

w̄2(Ω) =
µ2
N̄2
− 1

N̄
. (16)

w̄3(Ω) =
µ3
N̄3
− 1

N̄2
− 3w̄2(Ω)

N̄
(17)

All quantities on the right of these equations are computable from the galaxy CPDF for a

given cell size Ω.

In general, clustering estimates from area-averaged angular correlations (eqs. [16] and

[17]) lead to a considerable simplification in the data analysis, and give better signal-to-noise

ratio properties. The statistics in equation (13) also represent respectively, the variance,

skewness and kurtosis of the counts distribution, which are in turn are related to the two,

three and four-point correlation functions. This paper only considers variance and skewness.

We do not study kurtosis (four-point correlations) since as shown by previous studies (e.g.,

Kim & Strauss 1998), its estimated value is dominated by noise and good statistics are

needed to measure it robustly.

We can evaluate the parameters A and γ in the traditional power-law parameterization

for the differential two-point correlation function (eq. [8]) from the area-averaged function

as follows. Inserting equation (8) into the definition for w̄p=2(Ω) (eq. [14]), we have

w̄2(Ω) =
1

Ω2

∫

Ω1

∫

Ω2

Aθ1−γ12 dΩ1dΩ2. (18)

This integral is actually a two-dimensional integral over all possible pairs of elements dΩ1

and dΩ2 separated by θ12 in the cell region bounded by Ω (see Appendix A). Assuming

circular cells of diameter Θd, we find that this simplifies to

w̄2(Θd) =
16

π2
AC(γ)Θ1−γ

d , (19)

where C(γ) is a coefficient depending on γ and is evaluated using numerical quadrature as

outlined in Appendix A. From equations (16) and (19), we can therefore examine w̄2(Θd) as

a function of Θd and fit for the parameters A and γ (see § 5.1).

We also compute the RMS fluctuation in galaxy counts relative to the mean count

on angular scales represented by a specific cell diameter Θd. This is related to the second

moment of the CPDF and w̄2(Θd) as follows:

σΩ =

〈

(

δN

N

)2
〉1/2

=

√

k2
N̄2

=
√

w̄2(Θd), (20)
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where k2 is the second moment corrected for shot-noise (
〈

(N − N̄)2
〉

− N̄ ; see eq. [13]), and

the last step follows from equation (15). If shot-noise corrections to the second moment are

ignored, then k2 is replaced by µ2 (≡ k2 + N̄) in equation (20) and the RMS fluctuation

becomes:

σΩ =

√

1

N̄
+ w̄2(Θd). (21)

3.4. Error and Covariance Estimation

To estimate errors in statistics derived from counts-in-cells, we use the “bootstrap re-

sampling method” (see e.g., Ling et al. 1986). This method is based on first generating

N independent realizations (bootstrap samples) of random cell placements and measuring

the desired statistic from each, e.g., Si=1 . . . SN , (which may be w̄2(Θd) or skewness). An

estimate for the statistic is then given by the average over all realizations:

〈S〉 = 1

N

N
∑

i=1

Si, (22)

and the uncertainty is computed from the variance of the realizations:

σ2(S) =
1

N − 1

N
∑

i=1

(Si − 〈S〉)2. (23)

Previous studies (e.g., Hamilton 1993; Gaztañaga 1994; Magliocchetti et al. 1998) esti-

mated the uncertainty by subdividing the survey region into different zones and computing

the dispersion across all zones. Such methods however are conservative and errors are dom-

inated by cosmic variance in the subregions. The above prescription provides an unbiased

method of estimating sampling errors which are more representative for the whole survey

field, rather than regions where cosmic variance (or real clustering) dominates. Errors es-

timated from the “bootstrap resampling method” also have good convergence properties,

requiring at most 20 realizations of well sampled random cell placements.

The general error-covariance matrix describing correlations between (and variances

within) measurements is computed from

cov(Si, Sj) = 〈(Si − 〈S〉i) (Sj − 〈S〉j)〉realizations
≡ 〈SiSj〉 − 〈S〉i〈S〉j, (24)

where Si, Sj are two statistical quantities of interest which may be for example, w̄2(Θi),

w̄2(Θj) estimated at two angular scales Θi 6= Θj and computed from single bootstrap re-

alizations, and 〈S〉i, 〈S〉j are the respective ensemble averages of the quantities over their
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bootstrapped realizations (i, j) = (1 . . . N, 1 . . . N) (as defined by eq. [22]). A final average

(〈. . .〉realizations) over all possible pairs of realizations (i, j) is then performed to compute

cov(Si, Sj). Equation (24) reduces to the variance definition (eq. [23]) when i = j and

cov(Si, Sj) will refer to the diagonal elements of the covariance matrix. For i 6= j (non-

diagonal elements), the cov(Si, Sj) will refer to covariances between measurements, and these

will be non-zero if they are not statistically independent. We will use this covariance matrix

in § 5 when performing χ2-minimization fits to estimate the correlation function power-law

parameters (A, γ in eq. [8]), since in general, the w̄2 on different scales are not independent

and the errors are correlated.

3.5. The Hierarchical Model and Scale Invariance

In the hierachical model of galaxy clustering, all p-point volume or area-averaged cor-

relation functions can be expressed in terms of the two-point function, ξ̄2(r) or w̄2(Θ), and

dimensionless scaling coefficients Sp, e.g.,

w̄p(Θ) = Spw̄
p−1
2 (Θ) (25)

(Juszkiewicz et al. 1993; Bernardeau 1994; Fosalba & Gaztañaga 1998). This hierarchical

scaling of the higher order moments is a signature of the evolution of an initially Gaussian

distribution of density perturbations growing under gravity on linear to mildly non-linear

scales. The coefficients Sp are the so-called hierarchical amplitudes and have the property

of being scale invariant and insensitive to cosmic time and cosmology (Balian & Schaeffer

1989). Although initially derived and generalized for 3-D space, equation (25) also holds for

a 2-D projected distribution.

In 3-D space, the amplitudes Sp can be computed using (p − 1)th order perturbation

theory in the mildly non-linear regime (where δρ/ρ or ξ̄2 . 1). By applying second-order

perturbation theory in a gravitational instability analysis, Bernardeau (1994) found that that

S3 depends on the primordial power spectrum of fluctuations and, for a top-hat window, is

given by

S3 =
34

7
− (n+ 3), (26)

were n is the spectral index of the power spectrum, P (k) ∝ kn. S3 is also termed the “spatial

skewness” and equation (26) and has been confirmed with N -body simulations (Lahav et al.

1993; Lucchin et al. 1994).

Evidence for the hierarchical model and scale invariance of S3 and S4 was first found

in projected angular catalogues of optically selected galaxies (e.g., Groth & Peebles 1977;
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Sharp et al. 1984). Since we derive clustering statistics from projected catalogs, our values

for S3 cannot be directly compared to the spatial prediction in equation (26). Due to galaxy

projections and mixing of scale lengths, it is a complicated procedure to derive the spatial

skewness from projected statistics. Nonetheless, some authors have tried (e.g., Gaztañaga

1994; Magliocchetti et al. 1998), but results were extremely sensitive to the assumed redshift

distribution. In light of the various (and complicated) estimation biases involved in comput-

ing w̄3 and S3 (e.g., Hui & Gaztañaga 1999), we shall primarily concern ourselves on testing

qualitatively the p = 3 hierarchical model as described by equation (25).

We close this section by summarizing the main statistical measures derived from angular

counts-in-cells that will be used in the analysis sections (§ 4 and 5) of this paper. First, we

will compare observed CPDFs to the quasi-equilibrium gravitational clustering model of

SH84 (eq. [3]) as a function of angular scale. Second, we will compute area-averaged two

and three-point correlation functions from discrete moments of the CPDF (eqs. [16] and

[17]). Third, the traditional power-law fit parameters A and γ in the parameterization for

w2(θ) (eq. [8]) will be estimated from fits to the averaged correlations using equation (19).

Finally, we will explore the hierarchical model (eq. [25]) and dependence of the S3 amplitude

on angular scale.

4. Counts-in-Cells Results

We computed 14 distributions of counts-in-cells using circular cells with angular diam-

eters in the range Θd = 0◦.05 to 0◦.7 in intervals of 0◦.05. From these, we measured the

correlation statistics as a function of angular scale. This angular range corresponds to co-

moving scales of ' 1.8 − 26h−1Mpc at the expected median redshift of ' 0.9 for the full

sample (from the model redshift distribution of Xu et al. 2003, in Figure 13). For each cell

diameter, 5000 cells were initially thrown at random within a rectangular region encompass-

ing each entire field (Figure 1). We then eliminated cells which fell outside or contained the

boundaries of a field as defined by the high coverage regions (dashed boundaries in Figure 1).

In the end, the number of independent cells which fell within each field region varied from

' 2250 for Θd = 0◦.05 (smallest cell) to ' 1000 for Θd = 0◦.7 (largest cell).

The smallest cell size with Θd = 0◦.05 was chosen to avoid severe shot-noise (Poisson)

fluctuations, i.e., one with N̄ > 1. For this sized cell, we find N̄ ' 3.5 which appears to be at

the Poisson limit (still consistent with a Poisson distribution; e.g., see Figure 6), but starting

to deviate from it. In figure 6 we also show a distribution for Θd = 0◦.03 to illustrate the

Poisson behavior. The maximum cell diameter, Θd = 0◦.7 was chosen to avoid a systematic

bias from the finite boundary of the catalog region. We refer to this as “finite-boundary
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bias” and describe it in § 4.1.

Using the formalism of § 3 and our 14 angular counts-in-cells distributions, we computed

mean counts, variances, skewnesses, medians, RMS fluctuations, relative biases, the “virial-

ization” parameter b = −W/2K, w̄2(Θd) and w̄3(Θd) as a function of angular scale. Some of

these statistics are summarized for all samples in Table 1 for our maximum cell diameter of

0◦.7. These statistics were estimated by ensemble averaging over 20 bootstrap realizations of

NT random cell placements within the boundaries of the catalog, where NT depends on the

cell diameter. Uncertainties in these quantities were computed from the standard deviation

of realizations using the “bootstrap resampling method” as described in § 3.4. Although we

assumed 20 realizations throughout, the computed averages and standard deviations were

insensitive to the number of realizations used, and converged rapidly beyond 11 realizations.

After a discussion of systematic biases, these quantities are further analyzed in § 4.2, § 5.2
and § 5.
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Table 1. Sample summary and counts-in-cells statistics for θdiam = 0.7◦.

Subsample N
a

tot 〈N〉b 〈ρN 〉 σN skewness median δN/N b

ELAIS-N1

f24 > 450µJy (full) 12040 596.07 1548.86 51.56 -0.171 599 0.085 0.54

f24/f3.6 6 5.5 (blue) 2460 120.81 313.94 15.01 0.084 120 0.124 0.33

f24/f3.6 > 6.5 (red) 8410 416.61 1082.53 39.74 -0.039 418 0.095 0.49

ELAIS-N2

f24 > 450µJy (full) 4979 514.89 1337.92 40.39 -0.947 522 0.078 0.42

f24/f3.6 6 5.5 (blue) 1025 97.03 252.13 15.26 -0.185 99 0.157 0.32

f24/f3.6 > 6.5 (red) 3470 370.40 962.47 33.45 -0.505 370 0.090 0.37

Lockman

f24 > 450µJy (full) 8633 552.03 1434.44 43.56 0.732 543 0.078 0.45

f24/f3.6 6 5.5 (blue) 1780 106.68 277.20 18.98 0.423 103 0.161 0.41

f24/f3.6 > 6.5 (red) 6009 390.55 1014.82 26.38 0.712 387 0.067 0.25

aNumber of sources within continguous areas of ' 8.62 deg2 (ELAIS-N1), ' 3.98 deg2 (ELAIS-

N2) and ' 6.60 deg2 (Lockman) for each respective subsample.

bThe listed quantities 〈N〉 (mean count), 〈ρN 〉 (mean surface density in deg−2), σN (standard

deviation), skewness, median, δN/N (RMS fluctuation) and b (≡ −W/2K) correspond to a

circular cell diameter of θ = 0.◦7. These were estimated by averaging over 20 realizations of

' 1250 random cell placements.
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4.1. Systematic Biases from Finite Sampling

Below we describe four biases that affect estimates of galaxy clustering from sampling a

finite-sized survey region. These are often ignored when measuring clustering from counts-in-

cells. The first is finite-boundary bias which limits the maximum usable cell size; the second

is cosmic variance (or the “fair sample” approximation); the third is the integral constraint

bias and the fourth, which affects mostly estimates of higher order moments, is tail-sampling

bias from incomplete sampling of the high density tail of the CPDF in a finite survey area.

Finite-boundary bias arises from the fact that as one makes the cell size larger, there

are fewer and fewer independently sampled regions which don’t overlap and fall within the

survey area. The maximum cell size is that which fits within the entire region. However,

its distribution is a delta function, peaking at the number of galaxies which fall within it.

Therefore, as one makes the cell size larger, the mean and variance in galaxy counts from

all cell placements approaches a constant and zero respectively. To explore this, we show in

Figure 4 the variance, σ2(N), as a function of the mean number, N̄ , of galaxies computed

from 5000 cell replacements for diameters Θd = 0◦.03 to 2◦.50 in the EN1 field. The solid

diagonal line represents the Poisson prediction, σ2(N) = N̄ , and the gradual positive excess

in the measured variance above this line is due to real clustering. In other words, galaxy

correlations modify the Poisson prediction to σ2(N) = N̄ + N̄2w̄2(Θd) (c.f. eq. [16]), where

w̄2(Θd) is the area-averaged two-point correlation function. As the cell size increases beyond

Θd ' 1◦.2, the measured variance starts to turn over since the sampling is influenced by the

finite survey boundary. Therefore, our maximum cell diameter of 0.◦7 (shown by the vertical

dashed line), is well below scales on which systematic boundary effects start to dominate.

Clustering estimates below this are expected to be unbiased.

Cosmic variance effects are most important for catalogs constructed from small fields

where it is often assumed that the sample therein is “fair” in the sense that it represents

an unbiased realization of a homogeneous part of the Universe. This however cannot be

guaranteed since we know that galaxies are clustered on a wide range of scales. An example

is the study by Coleman et al. (1988) who found that the run of spatial galaxy density as a

function of cell size in the CfA catalog had still not reached homogeneity (constant density)

on scales ' 20h−1Mpc. If the mean galaxy number, N̄ , within a surveyed region is biased

high or low, then this will bias correlation function estimates in the direction of either low

or high respectively. This can be seen for example, from the functional dependence of w̄2(Ω)

on N̄ in equation 16.

Our samples, which cover contiguous areas of up to ' 8.5 deg2 are expected to probe

comoving scales of ' 112h−1Mpc at the expected median redshift of 0.9 (Figure 13), or

volumes of ' 2.5 × 107h−3Mpc3 out to z ' 1.5. This range is expected to contain & 90%
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Fig. 4.— Variance (σ2
N) in number of sources as a function of the mean number, 〈N〉, within

cells of angular diameter θ = 0.03−2.5◦ (filled circles) in the EN1 field. The solid diagonal line

represents the Poisson prediction: σ2
N = 〈N〉. The gradual deviation from Poisson behavior

with increasing θ is due to correlations between sources. The maximum cell diameter used

in this study, θ = 0.◦7 (shown), is well below scales (& 1.2◦ where 〈N〉 & 1900) on which

boundary effects become important.
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of the population according to the Xu et al. (2003) model redshift distribution. Thus, the

sample may be affected by superclustering. Spatial (3-D) homogeniety is difficult to ascertain

from a projected sample due to mixing and randomization of projected scale lengths, which

inevitably leads to an “artifical homogenization”. To get a handle on the cosmic variance,

we compared statistics and angular correlations across all three SWIRE fields. We found

that the mean galaxy count in 0◦.7 diameter cells randomly placed in each of the fields varied

by . 15%, the standard deviations by . 23% (see values in Table 1), and the mean relative

RMS deviation in w̄2(θ) over all angular scales by ' 18%. Figure 12 shows the relative RMS

deviation in w̄2(θ) as a function of angular scale. This measure is defined as

(

δw2

w2

)

θ

≡
√

〈(w̄2 − 〈w̄2〉)2〉
〈w̄2〉

, (27)

where 〈w̄2〉 is an average of w̄2(θ) over all three fields. Our findings are consistent with the

levels of cosmic variance found from number count studies to similar depths, showing that

it cannot be neglected when deriving clustering from small area surveys (see Shupe et al.

2005, and references therein).

The integral contraint bias Infante (e.g., 1994) arises from the fact that methods used

to estimate galaxy clustering (either from counts-in-cells or traditional binning techniques)

involve counting the excess number of galaxies above a random realization of the same ob-

served number within the survey region. This excess is expected to be biased “low” since the

mean density, 〈n〉, itself is likely to be biased “high” from the presence of positive correlations

between galaxies at small separations. In other words, the true mean density is unknown

since the density is estimated from the same sample from which one measures clustering. If

uncorrected, this bias causes all n-point correlation amplitudes to be underestimated (Hui

& Gaztañaga 1999). A sample which satisfies the integral constraint implies that the inte-

gral of w2(θ) over the entire survey region vanishes. The integral contraint bias generally

decreases in magnitude when the angular size of a survey increases significantly beyond the

scale over which w̄2(Θ) is measured, or over which it is relatively large. Since our maximum

cell diameter of 0.◦7 is an appreciable fraction of the field sizes, this bias cannot be ignored.

Using the results from perturbation theory, Hui & Gaztañaga (1999) computed ana-

lytical expressions to correct for the integral contraint bias in 3-D clustering estimators.

We instead start from the technique used by Infante (1994) who corrected for this bias in

projected catalogs, and generalize it for the case of angular-averaged correlations, w̄2(Θ),

computed from counts-in-cells. We first note that on average, the effect of w̄2(Θ) is to in-

crease the number of distinct galaxy pairs (Ngg) found within a region of size Θ by a factor of

' [1 + w̄2(Θ)] over that expected for a random sample Nrr. In other words, the overdensity
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in galaxy pairs with separations θi ≤ Θ can be written:

Ngg(≤ Θ)

Nrr(≤ Θ)
=

∫ Θ

0
[1 + w(θi)]n(θi)dΩ1dΩ2
∫ Θ

0
n(θi)dΩ1dΩ2

' Nrr(≤ Θ) +Nrr(≤ Θ)
∫ Θ

0
w(θi)dΩ1dΩ2

Nrr(≤ Θ)

= 1 + w̄2(Θ) (28)

where n(θi) is the underlying random galaxy pair density, and assumed more-or-less constant

on scales above which shot noise fluctuations dominate, i.e., at θi & 50′′ where N̄rr ≈ 1.

Without loss in generality, we can define a bias factor β for a survey with angular extent Θs,

above which the mean pair density is over-estimated:

β = 1 + w̄2(Θs),

' 1 + w̄2(Θmax)

(

Θs

Θmax

)1−γ

, (29)

where w̄2(Θs) applies to the whole survey region. The second line in equation (29) results

from the fact that w̄2(Θs) cannot be directly measured from the sample due to the finite

boundary bias. It therefore must be extrapolated from an unbiased measurement on smaller

scales, i.e., at Θmax = 0◦.7. The underlying assumption here is that a power-law, as param-

eterized by equation (19) applies across a full survey field. For the EN1, EN2 and LH fields,

Θs ' 2◦.93, 2◦.00, and 2◦.60 respectively.

All observed measurements of w̄2(Θ) for Θ ≤ Θs can therefore be corrected (upward)

for the integral contrant bias by first noting that [1 + w̄2(true)] = β [1 + w̄2(obs)]. Hence,

the true (corrected) w̄2(Θ) is given by:

w̄2(Θ) = βw̄2(Θ)obs + β − 1, (30)

where βw̄2(Θ)obs is computed using the moments methods outlined in § 3.3. Since β (eq.

[29]) depends on w̄2(Θs) which itself needs to be corrected for bias according to equation (30),

we compute β iteratively. In the first pass, β is set to unity; w̄2(Θs) (or more specifically

w̄2(Θmax), see eq. [29]) is then computed from equation (30), and the procedure is repeated

until |δβ/β| . 10−4. We found that this criterion was usually satisfied after the second

iteration. The values of β for all our samples are reported in Table 2.

We make no attempt to correct for the integral constraint bias that may affect estimates

of w̄3(Θ). A pth higher order moment depends on all lower < p order moments (see § 3.3) and
terms involving 1/N̄p. Thus, they are subject to more complex (higher order) manifestations

of the integral constraint bias. As described by Hui & Gaztañaga (1999), such biases are
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difficult to estimate and one usually has to resort to simulations. The associated higher order

corrections to w̄p>2(Θ) decrease more rapidly with increasing survey area, although they are

not necessarily smaller than that for w̄2(Θ). In view of this, computations involving w̄3(Θ)

in this paper, e.g., in testing the hierarchical model and its overall scale invariance (§ 5.3),
will be purely qualitative.

The final finite-area sampling bias is that from incomplete sampling of the high density

tail of the CPDF, or, tail-sampling bias. This was first discussed by Colombi et al. (1994) and

can be attributed to the abrupt cutoff in the cell counts distribution at some finite number

of galaxies due to the finite area of survey. In other words, there is always a densest region

in the finite area of a survey above which the sampled CPDF goes to zero for higher density.

High density fluctuations are rare and one generally needs a larger survey to reduce the bias.

For a given survey area, this bias can be minimized by ensuring that the survey is densely

sampled with a large number of cells (Szapudi & Colombi 1996). The bias mostly affects

the high-order moments of the CPDF (e.g., skewness, kurtosis, etc.) since they are heavily

weighted by its high density tail. Simulations and modelling have shown that the galaxy

CPDF asymptotically approaches an exponential at high densities, and various authors have

corrected for this bias by extending the tail CPDF using functional forms calibrated from

simulations (e.g., Colombi et al. 1994; Fry & Gaztañaga 1994; Kim & Strauss 1998). Unless

the survey area (or volume) is very small, or insufficient sampling used, these studies have

shown that the variance of the CPDF, and hence the two-point correlation amplitude derived

therefrom is relatively insensitive to the tail of CPDF. From the relatively large sizes of our

fields, the dense sampling used, and excellent agreement of the data with high density-tail

predictions from model fits (see § 4.2), we make no explicit corrections for this bias.

4.2. Distribution Functions and Fits

Galaxy counts-in-cells distributions for the full EN1 sample, for nine different cell sizes

are shown in Figure 6. The histograms are compared with the predictions of a Poission

distribution (dashed curves) given the observed mean count N̄ within each cell (eq. [6]).

The Poisson prediction is seen to provide good fits to histograms of cell counts for cell sizes

θ 6 0◦.05. On these scales, shot noise fluctuations are seen to dominate, since one has a finite

probability of finding an empty cell. For N̄ & 10, or cell diameters θ > 0◦.1, the Poisson

prediction is expected to approach a Gaussian with σ2
N ≈ N̄ . The histograms however start

to deviate dramatically from these predictions. For θ > 0◦.1, the results of Kolmogorov-

Smirnov tests show that the probabilities that the histograms are consistent with a Poisson

distribution are at the < 0.02 per-cent level.
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Some statistical quantities of interest as a function of angular scale for the full EN1

sample are shown in Figure 5. RMS fluctuations in the counts relative to the mean in

each cell are shown in the top panel. These estimates were not corrected for shot-noise

(Poisson) fluctuations as represented by equation (21). Pure Poisson RMS fluctuations are

given by 〈(δN/N)2〉1/2 =
√

σ2N/N̄
2 ≡ 1/

√
N̄ , where σ2

N ≡ N̄ . This prediction is shown by

the solid curve in this plot and represents the fluctuations one would obtain if the galaxy

distribution were assumed to be purely random (where by definition w̄2(θ) = 0). The

middle panel in Figure 5 shows skewness as a function of angular scale. Its definition and

implications are discussed below. The bottom panel shows the mean galaxy surface density,

n̄g = N̄/Ac, where Ac is the cell area. The density for a random (Poisson) distribution (not

shown) is expected to be more or less uniform and independent of scale, or within shot-noise

fluctuations on the smallest scales.

There is significant non-Gaussian behavior when the statistics in Figure 5 or Table 1

are examined. This may not be immediately obvious from the counts-in-cells distributions of

Figures 6 and 7. For Gaussian statistics, the (third moment) skewness (and all higher-order

odd numbered moments) are exactly zero. Skewness causes the mode and median of the

distribution to shift from the mean. A positive skewness implies that the galaxy distribution

functions are skewed towards larger source numbers, or, that typically the median . N̄ (as

seen in Table 1). The opposite holds for negative values of skewness. Detection of non-zero

skewness is of fundamental importance, since assuming evolution of clustering from Gaussian

primordial perturbations and linear theory implies that the skewness and all higher order

moments should remain zero (see Peebles 1980, and § 1). Non-zero detections may then

be a signature of non-linear gravitational clustering and are expected in the framework of

“biased” models of galaxy formation (Kaiser 1984; Bardeen et al. 1986).

We have computed the skewness using the conventional (nondimensional) definition:

skew(N) = µ3/µ
1.5
2 , where the moments µ3 and µ2 are computed using the unbiased popu-

lation estimators in equation (12). This skewness is shown as a function of angular scale for

the full sample in the middle panel of Figure 5, where we also show the Poisson prediction:

skew(N)Poiss = 1/
√
N̄ . We have estimated the standard deviation in the skewness, σ(skew),

using the bootstrap resampling method (eq. [22]) with 20 realizations. Examining the skew-

ness values in Table 1, we find significant non-zero skewnesses at the > 5σ level according

to bootstrapped uncertainties in all, but the blue and red subsamples of EN1. Setting aside

bootstrapped uncertainties, there is common belief in the statistics literature that a non-zero

skewness is statistically significant if its magnitude is larger than
√

6/N (e.g., Press et al.

1999, p. 612), where N is the number of samples (i.e., the number of randomly thrown cells).

With at least N ' 1000 cells falling within each field for θ = 0◦.7, we have
√

6/1000 ' 0.077,

consistent with the skewnesses being significant.
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Fig. 5.— Counts-in-cells statistics for the EN1 full sample as a function of cell diameter (filled

circles): RMS fluctuations (top), skewness (middle) and surface density (bottom). Poisson

predictions are shown by open circles connected by solid lines. To facilitate a comparison

with Poisson predictions, all measurements (filled circles) are as observed, and have not been

corrected for shot-noise (Poisson) fluctuations.
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To compare our skewness measurements with other studies, Plionis & Basilakos (2001)

found skewness levels of ' 0.69 and ' 0.28 on scales of 10 and 15 Mpc respectively in the

IRAS PSCz catalog. Despite probing similar length scales (albeit in projection), the reduced

skewnesses in our study are most likely due to the samples probing a larger redshift range

(e.g., Figure 13), where projection effects and mixing of galaxy-galaxy separations signifi-

cantly reduces the angular clustering at all orders. Nonetheless, the observed skewnesses

are likely to be real, and are consistent with models of non-linear gravitational clustering

evolved from Gaussian primordial fluctuations. The existence of both positive and negative

skewnesses amongst our samples is also consistent with numerical simulations (Moscardini et

al. 1991; Coles et al. 1993), where a negative skewness can be interpreted as an overdensity

of voids in the distribution.

The histograms of the cell counts were fitted to the gravitational clustering model of

SH84 (eq. [3]) for the observed value of N̄ to determine the dimensionless parameter b =

−W/2K as a free parameter (see § 3.1). These fits are shown as solid curves in Figure 6

for the full EN1 sample and the full angular range, and Figure 7 for other samples and a

fixed cell diameter of 0◦.4. The counts-in-cells on scales of 0◦.05 to 0◦.7 are seen to agree

very well with the theoretical CPDF of SH84. In previous studies, the model was also

seen to provide good fits to counts on larger scales, e.g., from the Zwicky catalog up to

θ ' 5◦ (Saslaw & Crane 1991), indicating an overall statistical homogeneity in the galaxy

distribution from small to large scales. Our results also suggest that 24µm samples probe

scales where clustering can still be described as a quasi-equilibrium thermodynamic process,

the underlying assumption of the SH84 model. Even though the angular scales in our analysis

are relatively small (as limited by the finite-boundary bias; see § 4.1), the mean number of

galaxies within θ = 0◦.1, N̄ ' 10 is comparable to that seen in the Zwicky catalog on 3◦

scales to an optical magnitude limit of ≈ 15. If there were any pronounced structures on

any particular scale within 0◦.1 . θ . 0◦.7 (where eq. [3] with b > 0 provides a better fit

than the Poisson prediction), then they would have led to departures from the CPDF model

of SH84.

Figure 7 compares observed distributions between the blue and red subsamples in EN1

(panels b and d respectively) for a fixed cell diameter of 0◦.4, i.e., a cell size which straddles

the full range considered in Figure 6. Two distinguishing features between these histograms

are the variance and mean galaxy count. The red subsample has ≈ 3.4× more galaxies and a

variance ≈ 6.7× greater than the blue subsample. This may lead one to believe that since the

red subsample has a larger variance, it has stronger clustering. In general however, clustering

is defined as the “excess fraction” above Poisson, and in our case, is effectively measured

by the ratio σ2
N/N̄

2 (cf. eq. [16]). This then implies that clustering is actually ≈ 1.7×
stronger in the blue subsample on 0◦.4 scales. In fact, this difference in angular clustering
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– 32 –

strength between the color subsamples (from each field) is entirely consistent with them

probing different redshift ranges. The blue subsample members are predominately located at

low redshift (see Figure 13) where their intrinsic clustering is less affected by dilution from

projected random galaxy-pairs.

In addition to the CPDF model fits of SH84, we also found very good fits of a lognormal

distribution to cell counts on all scales, with the quality of fits between these two model

CPDFs being largely indistguishable. The lognormal CPDF is defined by

f(N) =
1

N
√

2πσ2g
exp

[

−(logN − µg)2
2σ2g

]

, (31)

where µg and σ2g are the mean and variance of the underlying Gaussian field, not that

of the observed distribution. They are related to actual observables N̄ and σ2N by µg =

log (N̄) − (σ2
g/2) and σ2

g = log
[

1 + (σ2N/N̄
2)
]

. The physical motivation for this CPDF was

outlined by Coles & Jones (1991). In general, these authors argued that it provides a natural

description for density perturbations resulting from Gaussian initial conditions in the weakly

non-linear regime (ξ̄2 & 1). Kofman et al. (1994) showed that the CDPF of IRAS galaxies

is well modelled by a lognormal distribution. Equation (31) however is strictly a continuous

distribution where it makes better sense to replace N by the underlying smoothed galaxy

mass density ρ, with ρ > 0 on all scales. In fact, it was shown by Zinnecker (1984) to provide a

good description of the mass function resulting from hierarchical fragmentation and merging.

Galaxy counts, on the other hand, are expected to be a biased tracer of this underlying matter

field, and it is not clear how the two are related on all scales. The SH84 model describes

a discrete distribution derived from the thermodynamics of interacting particles, and thus

facilitates a more direct comparison with galaxy counts. Furthermore, using CDM N-body

simulations, Bernardeau & Kofman (1995) have shown that the lognormal distribution does

not naturally arise from mildly non-linear gravitational growth. It only provides a convenient

fit in a certain region of parameter space in the linear regime (ξ̄2 ¿ 1). Thus, even though

equation (31) may provide a better fit than a Gaussian to counts (or mass densities modulo

some bias factor) on all scales, its physical interpretation and evidence are still circumstantial.

In Figure 8 we plot the virialization parameter b as a function of angular scale for all

subsamples, derived from fits of equation (3) to the observed distributions. The second and

third moments about the mean for this model distribution (〈(N − N̄)2〉 and 〈(N − N̄)3〉) can
be written in terms of b as follows (Saslaw 1989):

µ2 =
N̄

(1− b)2 ; µ3 =
N̄(1 + 2b)

(1− b)4 . (32)

With a little algebra, we use equations (16) and (17) together with (32) to derive expressions
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– 34 –

for the angular averaged two and three point correlation functions in terms of b,

w̄2(θ) =
1

N̄

[

1

(1− b)2 − 1

]

, (33)

w̄3(θ) =
1

N̄2

[

(1 + 2b)

(1− b)4 −
3

(1− b)2 + 2

]

. (34)

Motivated by the observed power-law dependence for w̄2(θ) (eq. [19]), we write w̄2(θ) = αθs

where s = 1− γ. Using this parameterization, equation (33) can be inverted to write b as a

function of angular scale:

b = 1−
[

1 + N̄w̄2(θ)
]−1/2

= 1−
(

1 + N̄αθs
)−1/2

. (35)

Equation (35) can be linearized in the form Y = C + sX, where Y = log [(1− b)−2 − 1],

C = log (N̄α) and X = log θ so that we can fit the b versus θ measurements using linear

regression. Here, we are primarily interested in the qualitative functional dependence of b(θ)

and not the values of the fitted power-law parameters (see § 5 for these). Fits of equation

(35) are shown by the solid lines in Figure 8. The uncertainty in b was estimated indirectly

from uncertainties in w̄2(θ). Propagating errors in the first relation of equation (35), we find

σb =
N̄

2
(1− b)3σw̄2

, (36)

at each angular scale with measured values of b and w̄2. The σw̄2
were computed using a

“bootstrap resampling” with 20 realizations (see § 3.4). Across all samples, we find 0.01 .

σb . 0.03 where the lowest and highest values correspond to the smallest and biggest angular

scales respectively.

Overall, the dependence of b on angular scale over 0.◦05 6 θ 6 0.◦7 agrees rather well

with the functional form of equation (35). This is an indication that the assumption of a

power-law dependence for w̄2(θ) is a good one. This will be verified using a more direct

fitting approach of equation (19) to the data in § 5.1. Figure 8 has two noteworthy features.

First, there appear to be regimes for each subsample where b levels off and approaches a

constant on large scales. This is required by the assumptions leading to the derivation of the

SH84 distribution function (eq. [3]), where statistical homogeneity in the galaxy distribution

has been attained. This was verified in N-body simulations by ?. Put another way, if we

assume N̄ ' n̄gθ
2 for an approximately constant mean surface density ng, and if w̄2 ' αθ1−γ ,

then the product N̄w̄2 ' n̄gαθ
3−γ in equation (35) must approach a constant on large scales.

This implies that on large scales, b ∼ 1− (N̄w̄2)
−1/2 if γ < 3. This constraint on γ is indeed

consistent with observations. The second feature in Figure 8 is that the b values decrease

towards the Poisson limit with decreasing θ as expected, i.e., as θ → 0, N̄w̄2 → 0 and b→ 0

if γ < 3.
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Another feature to note is the different asymptotic values of b for the blue and red

subsamples in each field as shown in Table 1. From equation (35), this is just an interplay

between the various values of N̄ and w̄2 for each subsample so that effectively, the product

N̄w̄2 is different for each. Aside from these instrinsic differences, we can test the hypothesis

that each color subsample was selected at random from its full sample, independent of galaxy

neighbor density (hence clustering strength). We test this using a result from Saslaw (1989),

who showed that if the sampling is random, then the value bs for a subsample is related to

the value b for the full sample by

(1− bs)2 =
(1− b)2

1− (1− p) (2− b) b , (37)

where p is the probability of selecting a subsample member from the full sample (i.e., the

ratio of the number of galaxies in the subsample to that in the full sample).

Given the p and full-sample b values, we can use the random sampling hypothesis (eq.

[37]) to predict the values of bs for each color subsample in each field. For the EN1, EN2

and LH fields, we find bs(blue/red) = (0.24/0.47); (0.15/0.35); and (0.17/0.38) respectively.

We see that the b values for the blue subsamples estimated from distribution function fits

(Table 1) are all significantly larger (at > 3σ) than the values bs, predicted from random

sampling. This suggests the blue subsamples, taken separately, exhibit different angular

clustering properties than the red subsamples. In other words, the 3.6-24µm color of a galaxy

appears to depend on the number of galaxies in its environment when seen in projection.

This observation is none other than the redshift-range dependent projection effect discussed

above. The lower redshifts for blue galaxies in general (Figure 13) makes their angular

clustering less prone to dilutions from random projections relative to red subsamples.

As described by SH84 (and later elucidated by Fry 1985), b has both a physical and

statistical interpretation. These authors suggest that bmeasures the “degree of virialization”,

−W/2K, for a gravitating system of point particles in quasi-equilibrium. For a perfect gas

b = 0, while for relaxed clustering, b = 1. It is also interesting to note that in the quasi-

linear regime (ξ̄2 . 1), linear perturbation theory predicts a hard limit of b = 3/4 (Fry 1985).

Overall, our estimates for b in the “constant” regime agree well with those from previous

(low redshift) studies where b ' 0.62± 0.03 was measured for IRAS galaxies at . 40h−1Mpc

(Sheth et al. 1994) and 0.4 . b . 0.8 for galaxies in the UGC/ESO catalogs (Lahav & Saslaw

1992) and the Zwicky catalog (Crane & Saslaw 1986; Saslaw & Crane 1991) on . 10h−1Mpc

scales. This is not surprising since the angular scales and depths of our samples are expected

to probe similar scales (i.e., . 30h−1Mpc), albeit to redshifts z & 1.0. This supports the

notion of that the galaxy population has remained more or less statistically homogeneous

(or in a quasi-equilibrium, semi-relaxed state) since z ' 1.0.
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Recall that from a knowledge of w̄2(θ) and w̄3(θ), one can derive b(θ) and vice versa (e.g.,

eqs [33] and [34]). In Figure 9, we show actual measured values of w̄2, w̄3 as a function of b.

From this, it can be seen that larger values of b do not necessarily mean stronger clustering

“in excess” of Poisson sampling as inferred from the n-point correlations. In fact, we require

N̄ to increase with scale faster than (1 − b)−2 in order to keep w̄2, w̄3 finite. In Figure

9, we also show the values of w̄2, w̄3 one would obtain directly from the second and third

moments of the theoretical CPDF of SH84, given only the fitted b values (dashed curves).

The agreement is very good over the range of angular scales sampled. The discrepancy in w̄3

at b & 0.47 (or θ & 0◦.6) is due to the skewness estimates being very noisy on these scales,

and is most likely due to insufficient sampling. Nonetheless, the parameter b varies with scale

in a manner consistent with the dependence of the two- and three-point correlation functions.

This reinforces the fact that the theoretical CPDF of SH84 provides a good description of

the observed galaxy distribution.

We summarize the five main points of this section. First, there appear to be signifcant

non-zero skewnesses in all observed counts-in-cell distributions on scales θ & 0◦.1 (where

Poisson effects are expected to be minimal). This supports the LSS paradigm of non-linear

gravitational growth of clustering evolved from Gaussian primordial fluctuations. Second,

the model of SH84 (eq. [3]) provides a good description of the galaxy distribution over at

least an order of magnitude in angular scale. This implies that the three-dimensional galaxy

distribution is statistically homogeneous, in quasi-equilibrium and sampled in a representa-

tive way to yield unbiased two-dimensional distributions. This is reinforced by the similarity

in our b values with those of previous optical/infrared surveys that probe approximately

the same volume. Third, comparisons with the previous, shallower studies implies that the

galaxy population (selected at optical to far-infrared wavelengths) has remained more or

less statistically homogeneous since z ' 1.0. Fourth, values for the virialization parameter

b derived from distribution fits are consistent with those predicted using the observed two-

and three-point correlation function estimates and central moments of the SH84 model. This

reinforces the generality of the SH84 model. Fifth, the b values for the blue subsamples from

all fields are not consistent with them being selected at random from their full samples. The

higher b values measured for the blue subsamples are consistent with their higher two-point

correlation estimates, and can be explained by redshift-range dependent projection effects

affecting the relative angular clustering between the color subsamples.
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5. Clustering Estimates from Area-averaged Statistics

5.1. Angular Two-point Correlation Function

In this section, we estimate the power-law parameters (A, γ) traditionally used for

representing the two-point correlation function (eq. [8]). These are estimated using the

angular averaged correlations w̄2(Θ), measured from counts-in-cells (eq. [16]) and corrected

for the integral constraint bias (eq. [30]). w̄2 is related to (A, γ) and Θ through equation (19),

and its derivation is presented in Appendix A. The parameters (A, γ) can be estimated from

a linear least squares fit to the w̄2 versus Θ data in logarithmic space, i.e., we can re-write

equation (19) as

y = α + β x, (38)

where

y ≡ log [w̄2(Θ)],

x ≡ log Θ,

α ≡ log

[

16

π2
AC(γ)

]

, and

β ≡ 1− γ. (39)

We used a generalized linear χ2-minimization procedure to fit for α and β in equation

(38) which allowed for correlations between the w̄2 on different scales. Recall that the aver-

age two-point correlation estimate from the counts-in-cells technique combines information

coming from different scales, as opposed to the traditional estimator for w2(θ) where the

distribution of angular separations is binned into relatively small intervals. Thus, one does

not really measure w2(θ), but rather its average over the distribution of separations between

all possible pairs of points that lie within a cell, w̄2(Θ), of diameter Θ. Therefore in general,

the estimated w̄2 on different scales are not independent since there is significant overlap

amongst the randomly thrown cells of different size within the same finite survey region.

This causes the errors in the w̄2 estimates at different angular separations to be strongly

correlated. If correlations between cells are ignored and only bootstrapped variances on the

w̄2(θi) are used (eq. [23]) in model fitting, then uncertainties on the fitted parameters (A, γ)

are likely to be severely overestimated. Furthermore, ignorance of correlations will affect

values of the expected χ2 and the best fit parameters which minimize it since the variances

(and covariances) in w̄2 for all angular bins represent weights in the χ2 function (see below).

The χ2 function we minimize, which uses the full error-covariance matrix forN estimates
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of w̄2(Θi) at N different angular scales Θi, is defined to be

χ2(α, β) =
N
∑

k=1

N
∑

l=1

[yk − α− βxk]Bkl [yl − α− βxl] , (40)

where the variables follow from the definitions in equation (39), i.e.,

(xk, yk) = (logΘk, log w̄k) ; (xl, yl) = (logΘl, log w̄l), (41)

and Bkl are matrix elements of the inverse of the covariance matrix C:

B ≡ C−1 ; Ckl ≡ cov(yk, yl). (42)

The Ckl therefore represent (co)variances between the logarithmic values of w̄k and w̄l, cor-

responding to the logarithmic angular bins logΘk and logΘl respectively. The elements of

C are estimated using the bootstrap resampling method (§ 3.4) with 20 realizations for each

separate bin, i.e.,

Ckl ≡ 〈(yk − 〈yk〉)(yl − 〈yl〉)〉realizations. (43)

Since the parameterization of our power-law model in terms of (α, β) is linear (eq. [38]),

the minimization of χ2 is analytic, and these parameters (hence A, γ) can be evaluated

explicitly. This procedure is straightforward if C has a non-vanishing determinant, or, is

far from being singular, since otherwise, the χ2 minimization either cannot be performed

(in the singular case), or be highly unstable to changes in model parameters (in the quasi-

singular case). We computed covariance matrices Ckl from the y = log w̄2(Θ) estimates

and found that the covariance between angular bins is nearly as large as the variances in

the single bins for all subsamples. We can quantify this through the correlation coefficient

ρ(yk, yl) = Ckl/
√
CkkCll. We found that typically, −0.63 . ρ . 0.68 over 0◦.05 . Θ . 0◦.7,

with the closest (furthest) angular bins exhibiting larger (smaller) correlations. As suggested

from the size of these correlations, we also found that the covariance matrices are indeed

very close to singular (i.e., det(C) . 10−40), rendering a direct minimization of equation (40)

unsuitable. This is no surprise, since generally a singular covariance matrix is a consequence

of satisfying the integral constraint over the survey area ΩS:
∫

ΩS
w2(θ)dΩ = 0 (§ 4.1). To

circumvent this problem, we used a more stable version of equation (40) obtained using

the method of principal-component analysis (e.g., Kendall 1980). This method, as well as

the procedure used to determine (A, γ) and corresponding uncertainties are described in

Appendix B.

Results for the power-law parameters (A, γ) and corresponding 1-σ uncertainties for all

subsamples are summarized in columns 2 and 3 of Table 2. The correlation amplitudes A are
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in broad agreement with values from optical surveys to R . 23.5 (e.g., Couch et al. 1993),

K-band surveys to K . 20.5 (Roche et al. 2003, and references therein) and the FIRST

radio survey to f1.4GHz & 1mJy (Magliocchetti et al. 1998). Our amplitude range for the

full samples, 0.6 . A/10−3 . 1.6 is also consistent with recent 3.6µm surveys with Spitzer

(Fang et al. 2004; Oliver et al. 2004; Waddington et al. 2005) over the 3.6µm flux interval

30-110µJy (see the A versus 3.6µm flux plot in Fig. 2 of Fang et al. 2004). This flux interval

is consistent with the 3.6µm flux distribution of our 24µm samples (Fig. 2).

Fits of equation (19) using the χ2 minimization procedure described above are shown in

Figure 10 for the EN1 samples, and in Figure 11 for all full sample fields. As a consistency

check, we also computed w̄2(Θ) (dashed line in Fig. 10) using estimates of A, γ from a direct

fit of w2(θ) = Aθ1−γ to angular correlations derived using a traditional two-point binning

method on the full EN1 sample. For this, we used the Landy & Szalay (1993) estimator,

w2(θ) =
DD − 2DR +RR

RR
, (44)

whereDD, DR, and RR are the normalized number of distinct data-data pairs, data-random

pairs and random-random pairs respectively with angular separation (θ, θ + dθ). We used

angular bins spanning the range 0◦.005 to 0◦.5, and the w2(θ) estimates were corrected

(upward) for an integral constraint bias offset of ' 1.50 × 10−3. A simple Poisson error

model was used for the error in each bin, δw2(θ) = {[1 + w2(θ)] /DD}1/2 (Hewett 1982).

The power-law parameters found for the full EN1 sample from the direct binning method

are [A = (1.39± 0.51)× 10−3, γ = 1.89± 0.27] compared to [A = (1.61± 0.05)× 10−3, γ =

1.88±0.03] from counts-in-cells. Note that the uncertainties in the direct binning method are

likely to be overestimated due to the ignorance of correlations between bins. These estimates

are marginally consistent (dashed and solid lines in Fig. 10), implying the two methods more

or less converge on the scales of interest.
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Fig. 10.— Area-averaged two-point correlation function versus cell diameter for subsamples

in the EN1 field. The solid line represents a χ2-minimization fit of equation (19) to the

full sample results, and the dashed line is that predicted using the fit parameters [A, γ] =

[(1.39±0.51)×10−3, 1.89±0.27], derived using the traditional two-point binning estimator for

w2(θ) (eq. [44]). Similar qualitative differences in w̄2(θ) between the blue and red subsamples

are also seen in the EN2 and Lockman fields.
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Fig. 11.— Area-averaged two-point correlation functions versus cell diameter across three

SWIRE fields (full samples with f24 > 450µJy). Solid, dashed and dotted lines represent

χ2-minimization fits of equation (19) to the EN1, EN2 and Lockman data respectively. See

Table 2 for fit results.
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Fig. 12.— Open circles: cosmic variance represented by the relative RMS fluctuation in area-

averaged two-point correlation over the three SWIRE fields shown in Figure 11. The mean

is ≈ 18% and is indicated by the horizontal solid line. Solid circles: the mean area-averaged

two-point correlation across all three SWIRE fields. Dashed line represents a χ2-minimization

fit of equation (19) yielding [A, γ] = [(1.05± 0.08)× 10−3, 2.03± 0.07].
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Table 2. Clustering analysis results.

Subsample A (×10−3)a γ βb zmed
c r0 (h−1Mpc)d r0 (h−1Mpc)e

ELAIS-N1

f24 > 450µJy (full) 1.61± 0.05 1.88± 0.03 1.00160 0.91, 1.09 4.86± 0.22 6.86± 0.31

f24/f3.6 6 5.5 (blue) 2.57± 0.13 1.77± 0.07 1.00238 0.26 (phot-z) . . . . . .

f24/f3.6 > 6.5 (red) 2.33± 0.06 1.75± 0.04 1.00227 0.55 (phot-z) . . . . . .

ELAIS-N2

f24 > 450µJy (full) 0.66± 0.02 2.27± 0.03 1.00110 0.91, 1.09 4.62± 0.23 6.04± 0.30

f24/f3.6 6 5.5 (blue) 3.69± 0.15 2.05± 0.04 1.00477 0.26 (phot-z) . . . . . .

f24/f3.6 > 6.5 (red) 0.72± 0.03 2.26± 0.03 1.00145 0.55 (phot-z) . . . . . .

Lockman

f24 > 450µJy (full) 0.95± 0.02 2.01± 0.02 1.00118 0.91, 1.09 4.35± 0.15 5.98± 0.21

f24/f3.6 6 5.5 (blue) 6.48± 0.21 1.85± 0.03 1.00731 0.26 (phot-z) . . . . . .

f24/f3.6 > 6.5 (red) 0.36± 0.02 2.57± 0.04 1.00025 0.55 (phot-z) . . . . . .

aCorrelation amplitude on one degree scales. All errors are 1σ.

bIntegral constraint bias correction parameter (see § 4.1).

cThe median redshift for the full samples is that predicted by the XU, LAG model redshift distributions respec-

tively, and the blue and red subsample values are from photometric redshift distributions derived exclusively from

the ELAIS-N1 data (see Figure 13).

dAssumes the XU model redshift distribution with stable clustering (ε = 0; see figure 15).

eAssumes the LAG model redshift distribution with stable clustering (ε = 0; see figure 15).
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5.2. Blue versus Red Color Subsamples

The color subsamples, defined on the basis of the observed ratios f24/f3.6 6 5.5 (blue),

and > 6.5 (red) are of particular interest, since each is expected to be composed of galaxies

exhibiting different levels of star-formation and/or morphologies. Each may therefore exhibit

different intrinsic clustering properties and evolution thereof. This section takes a closer look

at the relative angular clustering between these subsamples and its relation to their possible

morphological mix and redshift distributions.

We examined a subregion of our EN1 field covering ' 6.6 deg2 which was also surveyed

in the UgriZ bands (T. Babbedge et al. 2005, in preparation). Our 3.6, 24µm detections

were associated with this optical catalog as discussed in Rowan-Robinson et al. (2005) and

Surace et al. (2005). To get some insight into the various galaxy types, we used the results of

Rowan-Robinson et al. (2005) who classified sources using a photometric redshift code that

allowed for varying amounts of optical extinction in model fits with the latest optical/IR

templates. Based on spectral fits to sources with four or more detections in UgriZ, 3.6µm

and 24µm, and good χ2 values (comprising ' 81% of the full sample), we found that ' 14%

were well fit with an (elliptical) “E”-type optical template, ' 70% with spirals, ' 9.3%

with starbursts (SBs) and ' 6.7% with an AGN optical template. Separating these by

f24/f3.6 flux ratio, we find that “E”-type galaxies comprised ' 20.8% and 6.5% of the blue

and red subsamples respectively. The remaining proportions consisted of the forementioned

types. This is not surprising since early-type galaxies generally do not exhibit strong mid-

IR emission (e.g., see also Yan et al. 2004). The photometric redshift code also reported

the “IR-spectral type” from either of the following classes: cirrus dominated galaxies, M82

or Arp 220-like SBs, and AGN tori. For our blue (red) subsamples in EN1, we found the

following proportions of these types respectively: '22% (5%), 47% (60%) and 21% (20%).

The remainder could not be classified. It appears that starbursts dominate the near-to-mid

IR SEDs to f24 = 450µJy, and even more so for the red subsample.

The top panel in Figure 13 shows photometric redshift distributions for the blue, red

and full samples in EN1. Rowan-Robinson et al. (2005) broke this down as a function of

the optical-SED template classes discussed above, and found the number of sources with E-

type best fitting templates exhibited a sharp cutoff at z ' 1, while spirals and SBs extended

beyond this. In particular, it is believed that a secondary peak in the distribution at z ' 0.9-

1.3 is due to the 10−12µm PAH emission feature and, that a generic cutoff at z ' 1.4 is due

to redshifted 10µm silicate absorption. The latter is most pronounced for the red subsample,

further suggesting that a large fraction of 24µm sources detected at z & 0.5 are dusty SBs.

It is important to note the percentage of f24 > 450µJy sources with missing photometric

redshifts due to either less than four band-detections or a poor χ2 in the template fits is
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' 19%. These photometric redshift distributions are thus not representative of our full

24µm sample. Most of the optically-faint (or non-) detections could be at higher redshift

as predicted by various models (see § 6.1). Nonetheless, these distributions are accurate

enough to illustrate limiting trends and overall morphological content with redshift of the

color subsamples.

Comparing the angular correlation estimates for the blue and red subsamples across all

fields in Table 2, we see that the blue galaxies (as a class) exhibit clustering amplitudes

' 1.5-20× greater than the red galaxies. This can be explained by their different redshift

distributions as seen in Figure 13. The blue subsample angular clustering is less affected by

random line-of-sight projections since its members are predominately at low redshift. On the

other hand, the red and full samples which contain galaxies distributed across larger a redshift

range will have their angular fluctuations smoothed out. Since the red subsample galaxies

are detected to slightly higher redshift, this suggests they are a slightly more luminous

population than the blue galaxies. This is consistent with the near-to-mid-IR color versus

mid-IR luminosity correlation found for SBs in the IRAS galaxy surveys (e.g., Carico et al.

1986; Goldader et al. 1997), or the ELAIS (ISO) surveys (Väisänen et al. 2002).

5.3. Hierarchical Scaling

As outlined in § 3.5, the hierarchical model of galaxy clustering predicts that the three-

point angular-averaged correlation function can be written in terms of the two-point function

as w̄3(Θ) = S3w̄
2
2(Θ) (eq. [25]), where the hierarchical amplitude S3 has the property of being

scale invariant. This scaling relation is a consequence of the evolution of an initially Gaussian

distribution of density perturbations growing under gravity on linear to mildly non-linear

scales (see references in § 3.5).

Figure 14 shows the angular-averaged three-point versus two-point correlation function

for the full EN1 sample. Each estimate is an ensemble average over multiple realizations (i.e.,

〈w̄2〉 and 〈w̄3〉) with errors estimated using the method of § 3.4. For comparison, we show a

linear least-squares fit of w̄3(θ) = S3w̄
α
2 (θ) giving S3 = 39.9± 14.2 and α = 2.52± 0.41 (solid

line), and a fit with fixed α = 2, i.e., the hierarchical model form giving S3 = 3.35 ± 1.20

(dashed-line). These fits were performed after discarding data for the four largest angular

bins at θ > 0◦.5 where the w̄3 (skewness) estimates are actually negative and thus, appear to

be underestimated when compared to extrapolations from the fits. Over this angular range,

the amplitude S3 = w̄3/w̄
2
2 in the EN1 field therefore appears marginally consistent with

scale invariance as predicted by the hierarchical model. For the EN2 and LH fields however,

the skewness measurements are mostly negative and noisy over all angular bins to allow any



– 48 –

0 0.5 1 1.5 2 2.5 3
z

0

0.5

1

Xu et al.
Lagache et al.
Fit to Xu
Fit to Lagache

0

1

2
f24/f3.6 > 6.5
f24/f3.6 < 5.5
Full (f24>450µJy)

df

dz

Fig. 13.— Top panel: Photometric-redshift distributions for the full and color subsamples in

EN1 from the photometric-redshift code of Rowan-Robinson et al. (2005). These are repre-

sented as distributions normalized to unity within each subsample. The typical uncertainty

in z is ' 7%. Bottom panel: Model redshift distributions for f24 > 450µJy from Xu et al.

(2003) (solid thick curve – “XU” model) and Lagache et al. (2004) (dashed thick curve –

“LAG” model). Also shown are parametric fits to these model distributions (thin curves) as

represented by equation (53).
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robust test of this model.

One reason for the noisy and/or unreliable w̄3 estimates is that they were not corrected

for the finite-sample biases like those which affect w̄2 (e.g., see § 4.1), or non-linear biases

such as the “ratio bias” which arises from the fact that 〈w̄3〉/〈w̄2
2〉 6= 〈w̄3/w̄

2
2〉, where the

angle brackets denote ensemble averaging. A more correct (unbiased) estimate for S3 would

have been from 〈w̄3/w̄
2
2〉. The effects of these biases were quantitfied by Hui & Gaztañaga

(1999) using N-body simulations and were shown to be most significant for scales approaching

& 50% a field size. Furthermore, we did not account for correlated errors between the w̄2

and w̄3 measurements on different scales in the least-squares fitting. Our goal here was

primarily to test qualitatively the hierarchical scaling relation, w̄p ∝ w̄p−1
2 for p = 3, and it

is encouraging to see that this applies in one of our fields over an angular range where the

skewness measurements can be considered reliable.

Studies have found that the value of S3 is very sensitive (and strongly correlated) to both

the fitted slope α and sample depth. A comparison between various angular and redshift

catalogs selected from a number of optical and IRAS studies by Hui & Gaztañaga (1999)

indicates a range 1.4 . S3 . 4.3, consistent with our result for EN1. The authors attribute

the large scatter to the fact that galaxies selected in different ways might be biased differently

with respect to the underlying dark matter. Interestingly, if we assume an effective power-

spectrum slope n = −1.4 as found for IRAS galaxies (Fisher et al. 1994), second-order

perturbation theory (eq. [26]) predicts S3 = 3.26, also consistent with our result.

6. Deprojection and Spatial Clustering

To a given depth, the angular two-point correlation function w2(θ), is dependent upon

the redshift distribution of the sources, N(z) as determined from the survey selection func-

tion, their 3-dimensional real space clustering, ξ(r, z), and the assumed cosmological model.

In turn, N(z) is dependent on the luminosity and number density evolution, and ξ(r, z) on

the clustering evolution of galaxies (both of which could also be correlated). In this sec-

tion, we use the cosmological Limber equation (Limber 1953) to estimate spatial correlation

lengths, r0, by deprojecting w2(θ) into ξ(r, z) assuming model redshift distributions consis-

tent with previous studies, and a simple evolutionary model for clustering. Results are also

discussed in comparison to previous studies.
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Fig. 14.— Area-averaged three-point versus two-point correlation function for full EN1

sample for the angular range 0◦.05 6 θ 6 0◦.5. The solid line is a linear least squares fit

of w̄3(θ) = S3w̄
α
2 (θ) giving S3 = 39.9 ± 14.2 and α = 2.52 ± 0.41. The dashed line is the

hierarchical model fit with fixed α = 2, giving S3 = 3.35± 1.20 (see § 5.3).
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6.1. Inversion of Limber’s Equation

From a multitude of past galaxy surveys, the two-point spatial correlation function,

ξ(r), is well approximated by a power-law of the form ξ(r) = (r/r0)
−γ over 10h−1kpc . r .

10h−1Mpc. We assume the following parameterization for the evolution of ξ(r):

ξ(r, z) =

(

r

r0

)−γ

(1 + z)−(3+ε), (45)

(e.g., Groth & Peebles 1977) where r is a proper distance, r0 is a spatial correlation length

at z = 0, and ε parameterizes the redshift evolution for the clustering (see below for inter-

pretation). We can express ξ(r, z) in terms of comoving coordinates, rc = r(1 + z), as

ξ(rc, z) =

(

rc
r0

)−γ

(1 + z)γ−(3+ε), (46)

which can be rewritten as

ξ(rc, z) =

(

rc
rz

)−γ

, (47)

where

rz = r0(1 + z)1−
3+ε
γ (48)

is now the comoving correlation length at some redshift z. It is important to note that r0 is

not a physical length scale in the 3D galaxy distribution, but the length at which ξ(r) = 1.

In other words, the chance of finding a galaxy at distance r = r0 from another galaxy is

twice that expected by chance from a random (Poissonian) distribution (cf. eq [7]).

Equipped with an evolution model for ξ(r) and assuming the parameterization w2(θ) =

Aθ1−γ , the amplitude A can be derived from Limber’s functional relation between w2(θ) and

ξ(r, z) (e.g., Phillipps et al. 1978; Loan et al. 1997), giving

A = Crγ0

∫∞

0
D1−γ(z)g−1(z)(1 + z)−(3+ε)(dN/dz)2dz

[∫∞

0
(dN/dz)dz

]2 , (49)

where D(z) is the angular-diameter distance, g(z) is the derivative of proper distance with

respect to z (see below), and

C =
√
π
Γ [(γ − 1)/2]

Γ(γ/2)
. (50)

Following previous studies, a crucial assumption leading to the derivation of equation (49) is

that angles θ subtended by projected galaxy separations, D(z)θ, are small. In other words, a

physical galaxy separation at z is approximated as r ' [u2+D(z)2θ2]1/2, where u is the line of

sight separation. This approximation assumes cos θ ' 1− θ2/2, and is adequate for angular
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correlation measurements at θ . 2◦. D(z) and g(z) depend on the assumed cosmology. We

specialize here for the general case of a spatially flat Friedmann-Walker metric with non-

vanishing cosmological constant where Ωm + ΩΛ = 1. For this case, the angular-diameter

distance D(z) and derivative of proper distance with respect to z, g(z) can be written

D(z) =
c

H0

1

(1 + z)

∫ z

0

dz′
[

Ωm(1 + z′)3 + ΩΛ

]−1/2
(51)

and

g(z) =
c

H0

[

Ωm(1 + z)5 + ΩΛ(1 + z)2
]−1/2

(52)

respectively. We assume Ωm = 0.3, ΩΛ = 0.7 and scale all distance measures by h−1 (where

h = H0/100 km s−1Mpc−1) in all calculations.

The evolution parameter ε (eqs [45]-[48]) can represent a variety of physical clustering

models. Three important ones are as follows (e.g., Phillipps et al. 1978). (1) Stable (constant)

clustering in proper coordinates (ε = 0): if galaxy clustering is gravitationally bound on small

scales, then clusters have fixed physical sizes (i.e., they neither contract nor expand with z)

and ξ(rc, z) will vary as (1 + z)γ−3. Since usually γ < 3, this means ξ(rc) will decrease with

z. (2) Stable clustering in comoving coordinates (ε = γ − 3): galaxies and clusters expand

with the Universe so that ξ(rc, z)=constant. This case may be a good approximation in a

low Ωm Universe where there is not enough gravitational pull to overcome expansion and

requires that structures have formed very early. (3) Growth of clustering (generally ε > 0):

more specifically, for linear growth in an Einstein-de Sitter Universe (Ωm = 1, ΩΛ = 0),

ε = γ − 1 (Peebles 1980), while for linear growth in a Λ-dominated cosmology, we can only

approximate the corresponding value of ε. For the Einstein-de Sitter case, the linear growth

rate of density fluctuations (δ ≡ δρ/ρ) is analytic and given by δ(z) = δ(0)/(1 + z). For

Ωm = 0.3, ΩΛ = 0.7, we find that δ(z) ' δ(0)/(1 + z)0.8 to within 6% of the true numerical

result over 0 . z . 2 (Figure 2 in Lahav & Suto 2004). Since ξ(rc, z) is by definition

〈δi(z)δj(z)〉 ∝ (1+z)−1.6, where i and j are two cells separated by some comoving separation

rc at redshift z, we can identify γ − (3 + ε) ' −1.6 using equation (46). Thus, linear growth

in a Ωm = 0.3, ΩΛ = 0.7 cosmology implies ε ' γ−1.4. This means that structure is required

to form earlier in a flat Λ-dominated cosmology.

It is important to note that the “ε-models” above (eqs [45]-[48]) only provide a working

framework to quantify the relative, on-average rates of clustering evolution between different

galaxy subsamples over restricted redshift ranges. They have been shown to be inconsistent

with predictions from N-body ΛCDM simulations and semi-analytic models which primarily

trace clustering of the underlying mass. Studies have shown that the observed clustering

evolution is a strong function of the evolution in galaxy biasing, halo mass, and non-linear

processes operating on small scales (e.g., Benson et al. 2001; Somerville et al. 2001). In
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general, the simulations show that the correlation length (in comoving units) is expected

to decrease at first with increasing redshift to z ' 1.5, imitating ε ' 0, but then increases

again thereafter following a ε ' −1.4 trend (Baugh et al. 1999). No single ε can therefore

parameterize the evolution. These predictions are consistent with Hubble Deep Field (HDF)

observations probing 0 . z . 4.5 (Connolly et al. 1998; Arnouts et al. 1999), a recent study

of the clustering of red galaxies in the Wide-Field Survey to z ' 1 (Brown et al. 2003), QSOs

to z ' 2.5 (Croom et al. 2001), and a multitude of other studies as summarized by Foucaud

et al. (2003). Overall, observations and models indicate a slow-to-moderate rate of evolution

over 0 . z . 2 in comoving coordinates, all bracketing −1.2 . ε . 0.8.

To compute r0 from equation (49), we need the redshift distribution, dN/dz, of our

sources. We assume two broadly different model redshift distributions from the literature

for f24 > 450µJy, which span different redshift ranges. These were generated from empirical

“backward” luminosity/density evolution models which use libraries of spectral templates

covering UV to IR-submillimeter wavelengths. These models are shown in the bottom panel

of Figure 13 and are from (Xu et al. 2003, hereafter XU), and Lagache et al. (2004, hereafter

LAG). Their median z values are shown in Table 2. The 24µm source counts as a function of

flux predicted by these models appear to be in broad agreement and consistent with Spitzer

observations (Chary et al. 2004; Marleau et al. 2004; Papovich et al. 2004; Shupe et al. 2005);

however, the LAG model appears to be inconsistent with counts from Chary et al. (2004)

down to ' 20µJy. More importantly, as shown by Lagache et al. (2004), the LAG model

predicts that the contribution to counts at f24 > 450µJy is from galaxies distributed almost

uniformly with redshift to z ' 2.5 (see Fig. 13). This is very difficult to reconcile with our

available photometric redshift data (Fig. 13), even if we allow for its ' 19% incompleteness.

The XU model is likely to provide a better match with this level of incompleteness. We have

included the LAG model as an extreme case to explore the dependence of spatial clustering

on the assumed dN/dz. Despite being initially defined from fits to data in the mid-to-far

infrared, the XU model also provides excellent fits to source counts at optical, near-infrared,

and sub-millimeter wavelengths, further confirming its versatility in reproducing counts over

a broad range of galaxy types. Another model worth noting which comes close to the XU

model (and covers more or less the same redshift range) is that of King & Rowan-Robinson

(2003).

For convenience in carrying out the integrations in equation (49), we have parameterized

the shape of the model redshift distributions shown in the bottom panel of Figure 13 as

(

df

dz

)

XU

=







0.85 z exp [− (4.4× 10−4) z25.0] for 0 6 z 6 1.4

−0.073 z + 0.238 for 1.4 < z 6 3.0

0 for z > 3.0.
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(

df

dz

)

LAG

=

{

1.6 z exp [−0.77 z1.80] for 0 6 z 6 3.0

0 for z > 3.0.
(53)

All these are normalized to unity, i.e.,
∫∞

0
(df/dz)dz = 1. The actual number of galaxies per

unit redshift is then given by
dN

dz
= ΩsN

(

df

dz

)

, (54)

where N is the mean surface density over a solid angle Ωs. The parameterizations defined

in equations (53) are shown in the bottom panel of Figure 13.

Note that the predicted correlation amplitude from Limber’s inversion (eq. [49]) is

dependent only on the shape of dN/dz (or df/dz), not it’s normalization. Furthermore,

the angular amplitude A is sensitive to the width (or dispersion) of dN/dz, ∆z. For faint

flux limits for instance, dN/dz is broader, and thus the clustering signal is diluted because

of the large number of randomly projected pairs. A is therefore approximately inversely

proportional to the width of the distribution over which it is averaged: A ∝ 1/∆z. This

then implies that a fixed value of A would require stronger intrinsic clustering (larger r0)

on average over ∆z to offset this dilution as ∆z increases. More specifically, equation (49)

implies r0 ∝ (∆z)1/γ . This dependence will be explored in more detail in the next section.

6.2. Inversion Results and Discussion

With a knowledge of A, γ, dN/dz, ε, and a cosmological model, the value of the z = 0

comoving correlation length, r0, is directly fixed by equation (49). In Figure 15 we show

r0 as a function of ε for all three full sample fields and assuming the XU and LAG model

redshift distributions for inversion of Limber’s equation. The rectangles enclose those re-

gions in (r0, ε) parameter space consistent with predictions from N-body simulations, other

observational studies (see references in § 6.2 for ε and Table 3 for r0), and various physical

ε-models as represented by the three broad scenarios in § 6.1. More specifically, the range

shown for ε (for each sample with given γ) corresponds to (γ − 3) . ε . (γ − 1.4). The

lower bound represents constant clustering in comoving coordinates and the upper bound to

linear growth in a Ωm = 0.3, ΩΛ = 0.7 cosmological model. These rectangular regions safely

bracket our r0 estimates using the XU and LAG models in all fields.

The trends in Figure 15 can be used to explore the dependencies amongst each of the

main model parameters (ε, r0 and dN/dz) that are necessary to match our observed angular

amplitudes. First, an increasing value of ε corresponds to an increase in the growth rate of

clustering, i.e., towards higher z the instrinsic clustering becomes weaker relative to z = 0.

This means that we require a larger r0 value (stronger local clustering) to achieve the same
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observed amplitude A for the same redshift range over which it is averaged. The dependence

of r0 on dN/dz is a consequence of the r0 ∝ (∆z)1/γ scaling for a fixed A and ε, where ∆z is

the effective width of dN/dz (see § 6.1). This is well illustrated by the LAG z-model which

has a (pseudo-FWHM) ∆z ≈ 2, compared to ∆z ≈1.1-1.2 for the XU model. Overall, a

factor of two change in ∆z results in an ≈ 25% change in r0, while the same change in ε

results in a . 15% change in r0 for −1.3 . ε . 0.5. Thus, the inferred intrinsic clustering is

most sensitive on the width of dN/dz.

As was discussed in § 6.1, the LAG z-distribution model is unlikely to be a good repre-

sention for our 24µm selected samples down to 450µJy. The XU model-predicted r0 values

are in better agreement with the (r0, ε) concordant ranges from other studies for all fields

(rectangular regions in Fig. 15). Table 2 summarizes the best fitting r0 values for all full

samples assuming ε = 0, i.e., stable clustering in proper coordinates. The assumption of sta-

ble clustering on which to base our best r0 estimates is not unreasonable since the physical

clustering sampled in this study is on typical scales of ' 1.8 − 26h−1Mpc over 0 . z . 1.5

where galaxies may have already virialized and detached from the Hubble expansion. Note

that r0 values for the blue and red subsamples were not estimated due to their uncertain

z-distributions. This will be deferred to a later paper.

Comparing our spatial clustering to that derived exclusively from previous shallow sur-

veys (Table 3), we see that our r0 values for all full sample fields, r0 ' 4.35− 4.86h−1 Mpc

(predicted using the XU z-model), are more consistent with those from mid-to-far IR sur-

veys (e.g., IRAS and ISO) than the optical, which find canonical values of r0 ' 5.0− 5.7h−1

Mpc. From local samples, the values derived from IR-surveys are lower on average than

those derived from optical (and also near-IR) surveys. This is expected since local optical

surveys contain a significantly higher proportion of early-types which are more strongly clus-

tered (e.g., Loveday et al. 1995), while IR-surveys detect a larger fraction of spirals, such as

that reported by the morphological study of an IRAS subsample by de Jong et al. (1984).

This distinction in r0 between IR and optical surveys however disappears amongst deeper

(z & 0.3) flux limited samples, for example, if we compare our results to the optical HDF

and CNOC2 surveys or the SWIRE 3.6µm (near-IR) surveys. This is believed (as suggested

by Brainerd et al. 1995) to be due to the deeper samples being dominated by bursting

gas-rich late-type spirals and irregulars, such as that reported in a number of deep HST

surveys (e.g., Driver et al. 1995; Abraham et al. 1996). As discussed in § 5.2, our results of
spectro-photometric modelling are indeed consistent with this scenario where ' 70% of the

sources are best fit with spiral galaxy templates in the optical/near-IR, and a majority have

IR SEDs resembling cirrus-dominated and starbursting types over 0 . zphot . 1.5. Thus,

despite the differences in clustering between local optical and IR samples, our results are

broadly consistent with those of optical surveys to similar depths, indicating that we are
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Fig. 15.— Correlation length r0 as a function of the evolution parameter ε for the full EN1

(top), EN2 (middle) and Lockman (bottom) samples (all f24 > 450µJy). Limber’s equa-

tion was inverted using the two model redshift distributions shown in the bottom panel of

Figure 13 and parameterized by equations (53). The rectangles enclose regions in (r0, ε)

parameter space most consistent with predictions from N-body simulations and other obser-

vations (see references in § 6.2). The dashed vertical lines delineate ε = 0 (stable clustering).
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more or less sampling similar (dominant) populations at high redshift.

The redshift range spanned by our sample, 0 . zphot . 1.5 (with median z ' 0.9)

is expected to probe epochs where a large fraction of gas has not yet been converted into

stars, distinct morphological types of the bulk population not yet established, and galaxy

clustering much less prounounced. However, despite our sample being considerably deeper

than the local IRAS surveys, our full sample r0 estimates are in remarkable agreement under

the assumption of stable (ε = 0) clustering. Thus, one may conclude this is consistent with

no clustering evolution over 0 . zphot . 1.5. However, due to the weak dependence of r0 on

ε for a fixed z-distribution (see Fig. 15), a range of −0.7 . ε . 0.2 is allowed for consistency

(within the quoted errors) with local IR surveys. Similar conclusions are reached if we

compare our r0 estimates with the 95% confidence range of r0 = 3.6− 4.7h−1 Mpc reported

for the ISO 15µm (zmed ' 0.2) ELAIS-S1 survey (Gonzalez-Solares et al. 2004). This sample

is of particular interest since our 24µm survey is expected to effectively sample the 15µm rest

frame at z ' 0.5− 0.7, i.e., close to peak of the expected f24 > 450µJy redshift distribution.

Indeed, by comparing the near-to-mid IR colors of ISO 15µm sources with a deep 24µm

Spitzer survey to f24 ' 20µJy (z ' 3), Chary et al. (2004) show that the 24µm detections

are likely to be an extension of the ISO-15µm population seen to z ' 0.8.
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Table 3. Comparison of three-dimensional clustering estimates across different surveys.

Survey λ (µm) zmed γ r0 (h−1Mpc)

This studya 24 0.91 1.88-2.27 4.35-4.86

Spitzer-SWIREb 3.6 0.6(0.75) 2.03± 0.10 3.3(4.4)± 0.1

ISO-ELAIS-S1c 15 0.2 2.04± 0.18 4.3+0.4
−0.7

IRASd 60 0.02 1.57± 0.03 3.79± 0.14

IRAS-PSCze 60 0.02 1.69 3.7

2dFGRSf 0.43 0.08 1.71± 0.06 4.92± 0.27

SDSSg 0.76 0.2 1.84± 0.02 5.77± 0.10

APMh 0.43 0.05 1.67 5.7

CNOC2i 0.60 0.1-0.5 1.59± 0.08 3.95± 0.12

HDF-Nj 0.81 0.4-1.6 1.8 2.37± 0.40

FIRSTk 20 cm ∼ 1.0 2.2± 0.1 9.7± 0.10

2dF-QSOsl 0.43 1.49 1.58+0.09
−0.10 3.99+0.34

−0.28

2dF-QSOsm 0.43 1.49 1.56+0.09
−0.10 5.69+0.42

−0.50

aQuoted γ and r0 ranges cover our full EN1, EN2 and Lockman

samples and assume the XU model redshift distribution (see Table 2).

bFrom selected validation fields in the ELAIS-N1 and Lockman

fields covering ∼ 2 deg2 (Oliver et al. 2004).

cGonzalez-Solares et al. (2004).

dSaunders et al. (1992).

eJing et al. (2002) and also independently Fisher et al. (1994)

fNorberg et al. (2001).

gBudavári et al. (2003).

hMaddox et al. (1990).

iShepherd et al. (2001), we quote their results for late-type galaxies

only.

jConnolly et al. (1998), the ±0.4 error corresponds to a 95% confi-

dence estimated from their Fig. 3. See also Arnouts et al. (1999).

kMagliocchetti et al. (1998).

lCroom et al. (2001) assuming ΩΛ = 0.7, Ωm = 0.3.

mCroom et al. (2001) assuming an Einstein-de Sitter cosmology.
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7. Summary, Conclusions and Future Work

We have presented initial results of galaxy clustering at 24µm by analyzing statistics of

the projected galaxy distribution from counts-in-cells. Our study has focussed on three fields

in the SWIRE program, and is the first of its kind at this wavelength and sensitivity. The

samples cover separate continguous areas of 3.98, 6.60 and 8.62 deg2 and are highly complete

down to a 9σ sensitivity of f24 = 450µJy. Spitzer-IRAC 3.6µm data were used to correct

for stellar contamination and maximize the reliability of detections. The largest sample area

probes comoving projected scales of ' 112h−1Mpc at the expected median redshift of 0.9,

or a volume of ' 2.5 × 107h−3Mpc3 over the expected redshift range 0 . z . 1.5. This

corresponds to epochs spanning & 80% of the star-formation history and evolution of LSS

in the Universe.

We explored angular clustering statistics using the full samples and subsamples defined

by cuts in observed 3.6− 24µm color, paying particular attention to systematic biases from

finite sampling and finite field sizes. We compared observed counts-in-cells distributions

to predictions of the quasi-equilibrium gravitational clustering model of SH84, and used

the second and third moments to explore qualitatively the hierarchical-scaling model. We

then estimated power-law fit parameters to angular two-point correlation functions using

a numerical method which inverts the angular-averaged variance from counts-in-cells with

allowance for covariances between bins. These were then deprojected using empirically de-

rived model-redshift distributions to invert Limber’s equation and obtain estimates of the

three-dimensional clustering.

Our main conclusions are as follows:

1. Distributions of counts-in-circular cells with diameters in the range 0◦.1 6 θd 6 0◦.7

(corresponding to comoving projected scales of '1.8-26h−1Mpc at z ' 0.9) reveal

significant non-Poisson and non-Gaussian behavior in the large mean cell-count limit.

Both positive and negative skewnesses are present at the> 5σ level in all full samples on

the largest angular scales. The inconsistency in the sign of the skewness between fields

can be attributed to cosmic variance, but nonetheless, the levels are consistent with

the paradigm of non-linear gravitational growth of clustering evolved from Gaussian

primordial fluctuations.

2. The quasi-equilibrium gravitational clustering model of SH84 provides a good de-

scription of the 24µm galaxy distribution over at least an order of magnitude in

scale. This suggests the three-dimensional galaxy distribution is statistically homo-

geneous, in quasi-equilibrium and sampled in a representative way to yield unbiased

two-dimensional (projected) distributions. We find values for the “virialization” pa-
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rameter b = −W/2K, i.e., the ratio of gravitational correlation energy to kinetic energy

of peculiar velocities of ' 0.42-0.55 across all full samples. This is consistent with pre-

vious optical/infrared surveys that probe approximately the same volume to z ' 1.0

and reinforces the overall statistical homogeneity of the galaxy population. Further-

more, b is found to vary with scale in a manner consistent with that predicted indirectly

from the scale dependence of the observed two and three-point correlations and central

moments of the SH84 model distribution.

3. The b values for the blue subsamples are not consistent with these samples being se-

lected at random from their full samples. This suggests that the number of galaxies

in the environment of a given galaxy depends on its 3.6 − 24µm color when seen in

projection. The larger b values for the blue subsamples compared to those predicted

from random sampling suggests blue galaxies display greater angular variance as a

population than the red or full samples. This is consistent with the lower on-average

photometric redshifts for blue galaxies since dilution to their angular clustering from

random projections is reduced relative to samples spanning a larger redshift range.

4. We assessed the level of cosmic variance by comparing statistics and angular corre-

lations across all three SWIRE fields. We found that the mean galaxy count in 0◦.7

diameter cells randomly placed in each of the fields varied by . 15%, the standard

deviations by . 23%, and the mean relative RMS deviation in w̄2(θ) over all angular

scales by ' 18%. This is consistent with the levels of cosmic variance found from num-

ber count studies to similar depths, showing that it cannot be neglected when deriving

clustering from small area surveys.

5. Values for the two-point correlation power-law fit parameters (A, γ) for all samples

were summarized in Table 2. The amplitudes are in broad agreement with those found

from optical surveys (e.g., to R . 23.5; Couch et al. 1993), and recent 3.6µm Spitzer

surveys (Fang et al. 2004; Oliver et al. 2004) to similar depths. This implies that we

are probing more or less the same LSS at optical-to-mid-IR wavelengths to this depth,

given the available (although weakly constrained) SEDs of the dominant populations.

6. The phenomenological hierarchical-scaling ansatz for gravitational clustering in the

linear to mildly non-linear regime, w̄3(θ) = S3w̄
2
2(θ), is marginally satisfied in only the

EN1 field where S3 = 3.35 ± 1.20. The skewness estimates in the EN2 and LH field

samples are too noisy and unreliable to allow a robust test of this model.

7. We used two (extreme) model redshift distributions: the XU and LAG models (§ 6.1),
empirically derived from mid-IR data to infer the three-dimensional clustering from

an inversion of Limber’s equation. The r0 estimates are sensitive to the assumed
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z-model, however, the XU-model has attained overwhelming success at reproducing

source counts for a broad range of galaxy types from optical to sub-millimeter wave-

lengths. It also appears closer to the photometric redshift distribution of 24µm sources

in EN1, despite the latter being incomplete by ' 19%. It would be difficult to recon-

cile these observations with the LAG model. We found spatial correlation lengths of

r0 ' 4.35 to 4.86h−1 Mpc across all (full-sample) fields assuming the XU-model and

stable clustering in proper coordinates (ε = 0). These are smaller than the canonical

r0 ∼ 5.4h−1 value derived from shallow optical surveys, but in agreement with results

from previous local mid-to-far IR surveys (e.g., IRAS and ISO). This agreement is

consistent with no clustering evolution over 0 . z . 1.5, although it does allow evolu-

tionary rates in the range −0.7 . ε . 0.2 for the quoted uncertainties in r0 across all

studies.

8. Our three-dimensional clustering estimates are also consistent with deep optical surveys

from HST and near-IR surveys from Spitzer. There is widespread belief that these

deeper surveys are dominated by bursting gas-rich late-type spirals and irregulars which

are intrinsically less clustered. This is consistent with the results of spectro-photometric

modelling of our 24µm sources by Rowan-Robinson et al. (2005), where ' 70% to

zphot ' 1.5 are best fit with spiral (late-type) galaxy templates in the optical/near-IR,

and with cirrus-dominated and/or starburst-type SEDs in the mid-IR.

The greatest limiting factor in this study has been knowledge of the redshift distribution

for estimating the three-dimensional clustering of various subsamples. We have resorted

to using simple phenomological backward evolution models, although these may not be

accurate enough to describe the morphological mix of galaxies as a function redshift. This is

important since it is becoming more apparent from large area surveys that galaxy clustering

is sensitive to the intrinsic properties of the galaxy samples under consideration, including

their morphological types, colors, luminosities, and environment.

A more definitive study will be possible when data from all SWIRE fields become

available, including more complete redshift information (photometric or otherwise). The

sheer number of galaxies will significantly reduce statistical errors and allow us to subdivide

samples to probe the dependence of the clustering signal on intrinsic galaxy properties and

environment density in much more detail. Good statistics will also allow an estimation of the

higher-order moments of the IR-galaxy distribution and their hierarchical scaling for each

galaxy type. We will be able to explore the evolution of clustering for different morphological

types, relative bias factors, and how IR-luminous matter is related to the underlying dark

matter. The preliminary results of this paper, obtained with only ≈ 1.5% of the total two

million galaxies expected in the full SWIRE survey to greater depths, shows the potential of
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SWIRE to constrain models of LSS and galaxy evolution at wavelengths and depths never

before sampled.
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A. Numerical Estimation of C(γ)

The function C(γ) is used to relate the traditional power-law fit parameters for the

parameterization of the two-point correlation function w2(θ) (eq. [8]) in terms of area-

averaged correlations as represented by equation (19). Here we provide the derivation leading

to equation (19) and method used to compute C(γ). This function was computed analytically

for fixed values of γ by Totsuji & Kihara (1969), and evaluated numerically using Monte

Carlo methods by Lahav & Saslaw (1992) for square cells only. No closed-form integral

representations for C(γ), however, were provided. We believe the derivation below is not a

new result, but is offered for the interested reader because we were unable to find one that

can be generalized for any cell shape in the literature. No doubt it exists, but there are times

when re-inventing the wheel is the fastest way to proceed.

We start from from the integral representation for w̄2(Ω) (see eq. [18]). We discretize

this double integral in a rectangular coordinate system as shown by the schematic in Fig-

ure 16. Since we considered circular cells in this paper, this integral actually represents a

two dimensional sum over all possible distinct pairs of solid angle elements dΩ1 and dΩ2 sep-

arated by θ12 in a region bounded by a circle with some angular diameter Θd. Without loss

in generality, we replace the solid angle elements by projected area elements: ∆A1 ∝ dΩ1

and ∆A2 ∝ dΩ2, and re-cast equation (18) in terms of a double summation over all elements

within a circular region covering an area (π/4)Θ2
d ∝ Ω:

w̄2(Θd) =
16

π2
AΘ−4

d

∑

∆A1

∑

∆A2

θ1−γ12 ∆A1∆A2. (A1)

For a circular region containing N discrete elements, we will need to sum over a possible

total number of N(N − 1)/2 distinct pairs of elements ∆A1 and ∆A2 separated by θ12. In



– 63 –

rectangular coordinates (see Figure 16), this separation can be written as:

θ12 =
[

(i∆x− i′∆x)2 + (j∆y − j ′∆y)2
]1/2

=
Θd

N

[

(i− i′)2 + (j − j ′)2
]1/2

, (A2)

where 1 6 [i, j] 6 N and 1 6 [i′, j′] 6 N are the cartesian (integer) coordinates of two

arbitrary elements and ∆x = ∆y = Θd/N . Furthermore, ∆A1∆A2 = (∆x∆y)2 = Θ4
d/N

4, so

that combining equations (A1) and (A2), we can write:

w̄2(Θd) =
16

π2
AΘ1−γ

d C(γ), (A3)

where

C(γ) =
1

N5−γ

∑

∆A1

∑

∆A2

[

(i− i′)2 + (j − j ′)2
](1−γ)/2

≡ 1

N5−γ

N
∑

i=1

N
∑

j=1

N
∑

i′=1

N
∑

j′=1

[

(i− i′)2 + (j − j ′)2
](1−γ)/2

. (A4)

The sums in equation (A4) must be evaluated by imposing two relational constraints on

the i, j, i′ and j′: first, we must ensure that we only count distinct pairs of cells at coordinates

(i, j) and (i′, j′), i.e., we must satisfy:

(i− i′)2 + (j − j ′)2 > 0. (A5)

and second, since we are working with a circular cell, we must only count pairs whose

coordinates (i, j) and (i′, j′) fall within a circular region defined by:

(

i− N

2

)2

+

(

j − N

2

)2

6

(

N

2

)2

and

(

i′ − N

2

)2

+

(

j′ − N

2

)2

6

(

N

2

)2

, (A6)

where N is the number of elements along a side length of the rectangular grid in Figure 16.

The larger the N , the more accurate will be the estimate for C(γ).

The computation of C(γ) from equation (A4) can be generalized to any cell shape

since all that needs to be defined is the bounded region over which the indices i, j, i′ and j′

are summed (e.g., eq. [A6] for circular cells). For square cells, for example, the bounded

region is simply that represened by the square grid in Figure 16. Comparing square to

circular cells, we find that the ratio of C(γ) for square cells to that for circular cells, R(γ) =
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C(γ)square/C(γ)circ, for some values of γ are: R(1.0) = 1.621, R(1.8) = 1.460, R(2.0) = 1.424

and R(3.0) = 1.303. Thus, the assumption of whether square or circular cells are used to

estimate correlation amplitudes from counts-in-cells makes a difference of at most ' 30% for

values γ ' 2.

Figure 17 shows C(γ) for a γ range extending beyond that commensurate with observa-

tions. This was evaluated from equation (A4) (coupled with eqs. [A5] and [A6] for circular

cells) assuming N 2 = (300)2 elements for the base grid in Figure 16. We can get an estimate

of the uncertainty in C(γ) by using the fact that C(1.0) = (π/4)2 (≈ 0.616850 . . .) exactly

for circular cells, i.e., when γ = 1 in equation (A4), this simplifies to the square of the ratio

of elements (or area) bounded by a circle to that bounded by a square grid with the same

diameter. From the numerical sums, we find that C(1.0) ' 0.616843, implying that our

estimates for C(γ) are likely to be good to 1 part in 105 for the observed γ range.

B. χ2 Minimization with Correlated Errors

Here we present the method used to estimate the parameters and uncertainties of our

linear model: (α, β) where y = α + β x (see eqs. [38] and [39]). As discussed in § 5.1, a
determination of these parameters by directly minimizing the χ2 function in equation (40) is

not possible due to the quasi-singular nature of the covariance matrix C. The mathematics

of linear fits with correlated data points is not new. In fact, Fisher et al. (1994) and Bern-

stein (1994) have discussed this in the context of fitting models to the two-point correlation

function with “bootstrap” derived covariance matrices which in general could be singular,

or close to it. We expand on the methods presented therein below.

First, we recast equation (40) in matrix form:

χ2(α, β) = (ỹ − ỹm)T C−1 (ỹ − ỹm) , (B1)

where ỹ is a column vector of the data yi = y1 . . . yN , and ỹm the corresponding vector of

“expected” model values ymi
= α+βxi. The first step of principal component analysis (PCA;

e.g., Kendall 1980) is to find a set of linear combinations of the measured values yi which are

linearly independent. In other words, the goal is to find a new “basis” (coordinate system) in

which correlations are non-existent. This amounts to finding a matrix M that diagonalizes

the covariance matrix C:

MT CM = D, (B2)

where D is diagonal. In particular, the symmetry of C (≡ CT ) guarantees the existence of a

diagonalizing matrix M whose columns form an orthogonal set of N eigenvectors for C with

corresponding eigenvalues along the diagonal of D. Once C is diagonolized, the power of
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Fig. 16.— Configuration of discretized coordinate system used to solve the double integral

in equation (18) for circular cells.
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Fig. 17.— The function C(γ) used for the two-point correlation power-law fitting in § 5.1.
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PCA is in the second step where we select only those eigenvectors (basis components) which

are the most stable, or have relatively large eigenvalues to ensure stability in χ2. This will

become more apparent below.

The specific procedure is as follows. If there are N elements in ỹ, we form the N ×
M matrix M from the M stable eigenvectors of C. We then define a new dataset (of M

“observables”) and corresponding expected (model) values in this new basis,

z̃ =MT ỹ; (B3)

and

z̃m =MT ỹm, (B4)

respectively, where the new components are guaranteed to be linearly independent with a

covariance matrix which is diagonal (i.e., with vanishing covariances) given by D (eq. [B2]).

We can now define a new “simplified” χ2 function,

χ2(α, β) = (z̃ − z̃m)T D−1 (z̃ − z̃m) . (B5)

As discussed above, stability in χ2 is ensured by selecting only those eigenvectors of C

with the largest eigenvalues. The eigenvalues (diagonal elements of D) are also actually the

variances for the new dataset z̃, σ2
i ≡ Dii. In other words, D−1 in equation (B5) is none

other than












1
σ2(z1)

0 · · · 0

0 1
σ2(z2)

· · · 0
...

...
. . .

...

0 0 · · · 1
σ2(zM )













, (B6)

and on expanding equation (B5), the χ2 reduces to the simple definition:

χ2(α, β) =
M
∑

i=1

[zi − zmi
(α, β)]2

σ2(zi)
. (B7)

By selecting the largest eigenvalues (variances), we therefore avoid erroneously inflating χ2

and making it unstable against changes in α and β.

Since the model for yk = log w̄(θk) is linear (eq. [38]), the minimization of χ2 is analytic.

From equations (B3) and (B4), components of the new data vectors z̃ and z̃m can be expanded

as:

zi =
N
∑

k=1

Mkiyk, (B8)
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and

zmi
=

N
∑

k=1

Mkiymk

= α
N
∑

k=1

Mki + β
N
∑

k=1

Mkixk

≡ αui + βvi, (B9)

respectively, where the Mki represent the matrix elements of the diagonalizing matrix M

and i = 1 . . .M . We use ui, vi as shorthand notation to represent the coefficient sums of α

and β. Applying the minimization conditions to equation (B7): ∂χ2/∂α = 0; ∂χ2/∂β = 0,

and solving the simultaneous system for α and β, we have

α =
S1S5 − S3S4

S2S5 − S2
3

;

β =
S2S4 − S1S3

S2S5 − S2
3

;

σ2α =
S5

S2S5 − S2
3

;

σ2β =
S2

S2S5 − S2
3

;

cov(α, β) =
−S3

S2S5 − S2
3

, (B10)

where the variances and covariance follow from the inverse of the coefficient matrix repre-

senting the simultaneous system with determinant S2S5 − S2
3 . The Sn are defined by

S1 =
M
∑

i=1

D−1
ii uizi

S2 =
M
∑

i=1

D−1
ii u

2
i

S3 =
M
∑

i=1

D−1
ii uivi

S4 =
M
∑

i=1

D−1
ii vizi

S5 =
M
∑

i=1

D−1
ii v

2
i , (B11)
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where ui, vi, and zi were defined in equations (B8) and (B9) and as discussed above, Dii ≡
σ2(zi) (the diagonal elements of D).

Having determined α and β (eq. [B10]), the power-law parameters A and γ, where

w2(θ) = Aθ1−γ are given by (inverting eq. [39]):

A =
π2

16

1

C(γ)
exp (α), (B12)

γ = 1− β. (B13)

The variance in γ is simply equal to the variance in β from the above minimization procedure

(eq. [B10]), σ2
γ ≡ σ2β, while the variance in A is not as straightforward due to the non-linear

C(γ) function. Applying standard error propagation to first order in α and C(γ) in equation

(B12), we have the general expression for the variance,

σ2A =

(

∂A

∂α

)2

σ2α +

(

∂A

∂C

)2

σ2C + 2cov(C, α)

(

∂A

∂C

)(

∂A

∂α

)

, (B14)

where C = C(γ) = C(1 − β). The procedure now is to estimate each term in equation

(B14). First, we have ∂A/∂α = A and ∂A/∂C = −A/C(γ). We determine the terms σ2
C

and cov[C(γ), α] using a local linear approximation:

C(γ) ' dC(γ)

dγ
γ + κ, (B15)

or

C(1− β) ' dC(γ)

dγ
(1− β) + κ, (B16)

where κ is a constant which will cancel out later, and

dC(γ)

dγ
≈ C(γ0 +∆γ)− C(γ0)

∆γ
, (B17)

which is computed assuming ∆γ = 0.1 for some fitted value γ0. The covariance term can be

written:

cov[C(γ), α] ≡ cov[C(1− β), α]
= 〈C(1− β)α〉 − 〈C(1− β)〉〈α〉. (B18)

Using the functional form for C(1 − β) in equation (B16) and expanding the expectation

values in equation (B18),

cov[C(γ), α] = −dC(γ)

dγ
[〈αβ〉 − 〈α〉〈β〉]

≡ −dC(γ)

dγ
cov[α, β], (B19)
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where cov[α, β] is given by the χ2 minimization solution (eq. [B10]). Furthermore, the σ2
C

term can be estimated using:

σ2C '
[

dC(γ)

dγ

]2

σ2γ . (B20)

Combining equations (B19), (B20) and results for other terms above in equation (B14), we

have the final result for the variance in the correlation amplitude,

σ2A ' A2

[

σ2α +
1

C(γ0)2

(

dC

dγ

)2

γ0

σ2β +
2

C(γ0)

(

dC

dγ

)

γ0

cov(α, β)

]

, (B21)

where the derivative (dC/dγ) is evaluated at some specific fitted value γ = γ0. Equation

(B21) is used to compute the 1-σ uncertainty in the correlation amplitude for all subsamples

in this paper.

Note that the above χ2 minimization procedure (eq. [B7]) does not depend in any way

on the errors in the yi (or residuals zi − zmi
) being Gaussian. It is only important if one

wants to treat the χ2 function as having a true χ2-distribution (with two degrees of freedom)

with a likelihood L = exp(−χ2/2) for the purpose of setting confidence limits on model

parameters, or, to assign a probability for the goodness of fit. Nonetheless, the central limit

theorem ensures that the underlying distribution of errors in the original w̄2(Θi) will be

approximately Gaussian. Assuming that the σ[w̄2(Θi)] are Gaussian, what about the errors

in yi = log w̄2(Θi), or, linear combinations thereof (eq. [B8]) used to define the χ2 in equation

(B7])?

We find that the normalized PDF for the logarithm of a Gaussian random variable

w̄2i = w̄2(Θi), can be written:

P (yi) =
1

√

2πσ2(w̄2i)
exp

[

yi −
1

σ2(w̄2i)
(eyi − 〈w̄2i〉)2

]

,

=
1

√

2πσ2(w̄2i)
w̄2i exp

[

− 1

σ2(w̄2i)
(w̄2i − 〈w̄2i〉)2

]

,

≈ 〈w̄2i〉G(w̄2i) for
σ(w̄2i)

w̄2i

¿ 1, (B22)

where the 〈w̄2i〉, is a boot-strapped ensemble average of some w̄2i with variance σ2(w̄2i).

The last expression follows from the substitution yi = log w̄2i where G(w̄2i) is the Gaussian

form, and the approximation in the last step is valid when the w̄2i are close to their en-

semble averages (i.e., the variance is small). At all angular separations, we typically have

σ(w̄2i)/w̄2i . 0.05, so that this approximation is justified to reasonable accuracy. In fact, we

find that the approximation P (yi) ≈ 〈w̄2i〉G(w̄2i) differs from the true expression for P (yi)
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(first line in eq. [B22]) by at most 10% in the tails, i.e., at & 3σ(w̄2i). Since any linear

combination of a Gaussian random variable is also Gaussian (e.g., the zi in eq. [B8]), we can

then treat the simple χ2 function in equation (B7) as a true χ2-distribution for the purpose

of computing goodness-of-fit probabilities and assigning confidence limits.

The quantity in equation (B7) is then distributed like χ2 with ν = M − 2 degrees of

freedom about it’s minimum value. The absolute goodness of fit is given by the probability

Q(χ2
min|ν) that some measured realization of the data, zi, will yield a χ2 which exceeds the

observed value χ2
min by chance (i.e., expected on the basis of random Gaussian fluctuations

alone). This probability is given by the incomplete gamma function (e.g., Press et al. 1999,

p. 216):

Q(χ2
min|ν) =

1

Γ(ν/2)

∫ ∞

χ2
min/2

e−ttν/2−1dt (B23)

For the full sample all subsamples, we have the range ν = 7 − 10 (or M = 9 − 12 principle

components; see above) with χ2
min ' 5.8− 12.6 respectively. This range corresponds to Q '

0.56− 0.24, indicating that our power-law models for w̄2(θ) are an adequate representation

of the data. Also, the values of χ2
min are in good agreement with those expected from the χ2

statistic, i.e., 〈χ2
min〉 ≈ ν, and within standard deviation

√
2ν.
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