
Frank Masci Page 1 06/18/2003

Interpolation of ASCII-Table Information via Calibration Transfer

F. Masci, 6/18/2003

I. Overview and Aim

One of the options in calibration transfer (caltrans) is to create new calibration products by interpolating two pre-
existing calibration products with independent records in the fallback or metadata database tables at the acquisition
time of a DCE. The simplest example is interpolation of DN-to-flux conversion factors and their uncertainties. It is
envisaged there will be other scalar variables where interpolation may be needed in future. Flexibility in caltrans is
therefore required to accommodate this . This document describes a method for standardizing the storage and usage
of ASCII table calibration-data under the caltrans interpolation scheme.

II. Method

i. We assume that all possible ASCII calibration data can be stored in IPAC-table format, such as the
hypothetical example below. To make it as generic as possible, the column lengths need not be the same.
Caltrans need not be concerned with the number of columns or rows – it is just a collection of data whose
entries are understood by downstream software (e.g. science pipeline wrappers). The only requirement is
that it is in IPAC-table format.

ii. For caltrans to carry out the interpolation rule, at least two instances of a calibration-data table must exist
in the database. If there are more than two instances, caltrans should pick the pair of entries which are
closest-in-time as it currently does. If there is only one entry, it should “fall-back” to using the closest-in-
time entry.

iii. Below is the new proposed input namelist specification to caltrans when interpolation is desired (in this
case the range of rule ID’s is 400 and above; rule ID = 0 signifies “fallback”). Command-line equivalents
will also exist. There is a new namelis t parameter: “CalColName#” which is described below. For
simplicity, not all required variable specifications are shown.

 CalType = ‘darkcal; lincal; flatcal; paramtable’,
 CalOutFname = ‘dark.fits; lincal.fits; flat.fits; mipsparam.tbl’,
 CalRule = ‘0; 0; 0; 400’,
 CalColName4 = ‘fluxconv; errfluxconv; inconst’;

iv. The parameter CalColName# specifies a list of column names where interpolation is desired in CalType
product number “#” of the CalType list (in this case # = 4). This adds flexibility in specifying more than

\char Comment This table contains parameters for calibrating science data.
\char INSTRUME = 'MIPS'
\int CHNLNUM = 2
\char Index = 'counter for row entry'
\char fluxconv = 'conversion factors from DN/sec to microJy/arcsec^(2)'
\char errfluxconv = 'uncertainties for fluxconv'
\char gain = 'gain values'
\char latcoeff = 'latent coupling coefficients'
\char inconst = 'incomprehensible parity constants'
|Index |fluxconv |errfluxconv |gain |latcoeff |inconst |
|int |double |double |double |double |real |
 1 1.34 0.05 5.34 3.14 1.21
 2 1.54 0.04 4.23 3.21 1.71
 3 1.41 0.03 4.67 3.54 1.31
 4 1.78 0.08 5.21 3.45 1.54
 5 3.23 1.25
 6 3.11 1.44
 7 3.87 1.45

Frank Masci Page 2 06/18/2003

one ASCII parameter file in the CalType list where interpolation may or may not be desired. Below is a
schematic of the proposed processing flow when CalRule ≥ 400 is specified:

If Rule ID ≥ 400 specified…

Check for at least two records in
database with appropriate time-
stamps. Use pair separated closest
in time. Fall back to closest-in-
time record if only one record.

Check that all specified CalColName
inputs exist in both files and that all
column lengths match. If not, abort
with appropriate error to stdout.

Check to see if both records are
ASCII files in IPAC format or FITS
files. If the former, proceed with
next step, otherwise use FITS
interpolation (not discussed here).

Search for the “CalColName#”
specification input string
corresponding to the CalType “#”
in list. Abort if it does not exist.

For each column name in the
CalColName input string, interpolate
values under that column name from
each table file at the DCE time.

Output product will contain:
1. Same IPAC-table format as inputs
2. New interpolated values under all
column names specified in the
CalColName input string.
3. For columns where no
interpolation was desired, copy
entries from closest-in-time product
record to output table file.

Fig 1. Caltrans processing flow under the interpolation scheme

v. The tableio library for reading/writing tables in IPAC format and error checking routines provided therein

should be used.

III. Downstream S/W Requirements

Once the above functionality is imp lemented, it is envisaged that all relevant pipeline modules and/or wrappers
which make use of the new cal-product format will need updating. In the case of code written in native C or C++,
the tableio library can be used. For perl wrappers, it would be advantageous to call a standard perl library for
reading IPAC-tables which all systems can use. F. Masci will embark on writing a perl IPA C-table reader for this
purpose (which is to be called perltbli).

