
Frank Masci Page 1 06/16/2003

Use of Shared Memory in Automated Pipelines

F. Masci, 3/24/03

I. Objectives

1. Main objective : minimize/eliminate use of physical disk I/O when passing intermediate

FITS files in a BCD pipeline by using static shared memory buffers. The aim is to make the
BCD processing as “CPU-bound” as possible, justifying the need for faster CPUs.

2. Convert existing science super-wrappers to use pre-defined shared memory buffers via a
script and a configuration file which maps all FITS filenames to cfitsio shared memory
segment ID’s (see below).

3. Implement a robust design which allows multiple instances of pipelines (jobbers) to be
executed simultaneously on any given drone.

4. At the end of a pipeline, have a script (library routine) which copies the contents of selected
shared memory buffers (desired intermediate products) to the sandbox and flushes all
memory buffers.

II. Conversion of Pipeline Super-wrappers

Assumptions:

1. It is assumed that exclusive use of shared memory will not remove the need to run

multiple jobbers on individual drones. The processing time is assumed to not scale in
exact (inverse) proportion to CPU speed. Thus, the design below allows for multiple
pipeline instances per drone to maximize throughput. We can of course go with one
jobber per drone if the new design shows little dependence of throughput on number
of jobbers.

2. There will never be more than 3-jobbers running at any given time on a drone. The
design below is flexible enough to allow more/less jobbers if desired.

FITS-to-Shared Mem. Map File:

Each science super-wrapper specific to an instrument/channel will have an associated
configuration file or translation table which maps intermediate product FITS files to pre-defined
shared memory segments. The following is a prototype “ShmemMap.tbl” file.

\character comment = FITS file to Shared memory translation table
\character comment = read by FITS2SharedTrans.pl
\character instrument = MIPS
\int channel = 1
\character basesuperwrapper = w_mipe24_sur_science_superwrapper.pl
\character sbx_copy = 1 if want to copy to sandbox, = 0 if not
\character shmem_jobID1 = shared segments for jobber 1 (range 0-31)
\character shmem_jobID2 = shared segments for jobber 2 (range 32-63)
\character shmem_jobID3 = shared segments for jobber 3 (range 64-95)
|FITS_file |shmem_jobID1 |shmem_jobID2 |shmem_jobID3 |sbx_copy
|char |int |int |int |boolean
 tranhead.fits shmem://h0 shmem://h32 shmem://h64 1

Frank Masci Page 2 06/16/2003

 cvti2r4.fits shmem://h1 shmem://h33 shmem://h65 0
 desatslpe.fits shmem://h2 shmem://h34 shmem://h66 0
 linearize.fits shmem://h3 shmem://h35 shmem://h67 0
 dmask.fits shmem://h4 shmem://h36 shmem://h68 1
 dntoflux.fits shmem://h5 shmem://h37 shmem://h69 1

Conversion Script:

There will be a script which replaces FITS filenames to equivalent shared memory segment
ID’s (as defined in the table above) in a science super-wrapper. The script will have the
following prototype.

FITS2SharedTrans.pl –w <super_wrapper.pl> -t <ShmemMap.tbl> -m <f or r>
 -p <jobber ID>

where the inputs/outputs are as follows:

–w <super_wrapper.pl>: Input science super wrapper or pipeline script (required).
–t <ShmemMap.tbl>: Input FITS-to-shared map file (see above; required).
–m <f or r>: Flag to perform forward “f” (FITS-to-shared) or reverse “r” (shared-

to-FITS) translation (default = f).
–p <jobber ID>: The jobber ID number (1, 2 or 3). This may be obtained from the

PMID environment variable value which is a concatenation of the
pipeline machine number and jobber ID (required).

III. Method 1: Dynamic conversion according to Jobber ID

If one desires to run multiple jobbers per drone, it must be ensured that the pipeline instantiated
by a given jobber (with ID encoded in the PMID) will only access it’s own pre-allocated shared
segments as defined in the translation table above. The first method performs the FITS-to-
shared segment replacement in the super-wrapper script dynamically prior to executing every
instance of “run_pipeline.pl”. This is the simplest design, although it will add some (negligible)
overhead.

IV. Method 2: Static multiple Super-Wrappers according to Jobber ID

The second option assumes that separate jobber-dependent (FITS-to-shared mapped) science
super-wrapper scripts have been created beforehand on disk and named according to the jobber
ID. For example: mips24_super_wrapper1.pl, mips24_super_wrapper2.pl and
mips24_super_wrapper3.pl (assuming a maximum of three jobbers per drone will ever exist).
Each of these scripts execute the same science thread except that each will contain its own
shared segment range as defined by the translation table above. This design will only require
run_pipeline.pl to be modified to execute the correct “mips24_super_wrapper#.pl” script
according to the jobber ID # (possibly through the PMID value).

Frank Masci Page 3 06/16/2003

V. Copying to Sandbox and Flushing Shared Memory Segments

We envisage there will be script (or perl library routine) called at the end of each pipeline to:

1. Convert desired shared memory segments into corresponding FITS files and create them
directly on the sandbox disk, and,

2. Flush all pre-existing shared memory buffers.

At the time of writing, it is unclear whether the above functions should be implemented in C or
perl. If implemented in C (likely more efficient), the module will take a minimum of three
arguments: <SandBoxPath>, <ShmemMap.tbl> and <jobber ID> which respectively represent
the full sandbox path, FITS-to-shared map file (see above) and the jobber number respectively.
The module will make use of the “sbx_copy” column in the ShmemMap.tbl file to select those
FITS files to physically create on the sandbox.

