
Find Nodes

Leftovers

Voting Booth

Notices

PDL Datatypes

All piddles store matrices of data in the same data type. PDL supports the
following datatypes:

Datatype Internal 'C'
type Valid values

byte unsigned
char Integer values from 0 to +255

short short Integer values from -32,768 to +32,767

ushort unsigned
short Integer values from 0 to +65,535

long int Integer values from -2,147,483,648 to +2,147,483,647

longlong long Integer values from –9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

float float Real values from -1.2E-38 to +3.4E+38 with 6 decimal
places of precision

double double Real values from 2.3E-308 to +1.7E+308 with 15 decimal
places of precision

pdl Examples

Row vector from explicit
values: $v = pdl($type, [1,2]);

Column vector from
explicit values:

$v = pdl($type, [[1],[2]]); or $v =
pdl($type, [1,2])->(*1);

Row vector from scalar
string: $v = pdl($type, "1 2 3 4");

Row vector from array of
numbers: $v = pdl($type, @a);

Matrix from explicit
values: $M = pdl($type, [[1,2],[3,4]]);

Matrix from a scalar: $M = pdl($type, "[1 2] [3 4]");

Piddle Helper Creation Functions

In the following functions, where arguments are marked as ..., accept arguments
in the following form:

$type - an optional data type (see above)
$x,$y,$z,... - A list of n dimensions for the resulting piddle, OR
$M - Another piddle, from which the dimensions will be re-used

Sequential integers, starting at zero: $M = sequence(...);
Sequential Fibonacci values, starting at one: $M = fibonacci(...);

$M = zeros(...);

PerlMonks FAQ
Guide to the Monastery
What's New at PerlMonks
Voting/Experience System
Tutorials
Reviews
Library
Perl FAQs
Other Info Sources

Nodes You Wrote
Super Search
List Nodes By Users
Newest Nodes
Recently Active Threads
Selected Best Nodes
Best Nodes
Worst Nodes
Saints in our Book

The St. Larry Wall Shrine
Buy PerlMonks Gear
Offering Plate
Awards
Random Node
Quests
Craft
Snippets
Code Catacombs
Editor Requests
blogs.perl.org
Perlsphere
Perl Weekly
Perl.com
Perl Jobs
Perl Mongers
Perl Directory
Perl documentation
MetaCPAN
CPAN

My primary motivation for
participating at PerlMonks
is: (Choices in context)

Anticipated reciprocity
Recognition
Sense of efficacy
Sense of community
Self-discovery
Personal influence
Enjoyment
Vote

Results (43 votes). Check out
past polls.

https://www.perlmonks.org/?node=PerlMonks%20FAQ
https://www.perlmonks.org/?node=the%20Perl%20Monks%20guide%20to%20the%20Monastery
https://www.perlmonks.org/?node=Tidings
https://www.perlmonks.org/?node=Voting/Experience%20System
https://www.perlmonks.org/?node=Tutorials
https://www.perlmonks.org/?node=Reviews
https://www.perlmonks.org/?node=Library
https://www.perlmonks.org/?node=perlman:perlfaq
https://www.perlmonks.org/?node=Where%20can%20I%20find%20more%20information%20on...
https://www.perlmonks.org/?node_id=6364;user=961
https://www.perlmonks.org/?node=Super%20Search
https://www.perlmonks.org/?node=Perl%20Monks%20User%20Search
https://www.perlmonks.org/?node=Newest%20Nodes
https://www.perlmonks.org/?node=Recently%20Active%20Threads
https://www.perlmonks.org/?node=Selected%20Best%20Nodes
https://www.perlmonks.org/?node=Best%20Nodes
https://www.perlmonks.org/?node=Worst%20Nodes
https://www.perlmonks.org/?node=Saints%20in%20our%20Book
https://www.perlmonks.org/?node=The%20St.%20Larry%20Wall%20Shrine
https://www.perlmonks.org/?node_id=781756
https://www.perlmonks.org/?node=Offering%20Plate
https://www.perlmonks.org/?node=Awards
https://www.perlmonks.org/?op=randomnode
https://www.perlmonks.org/?node=Quests
https://www.perlmonks.org/?node=Craft
https://www.perlmonks.org/?node=Snippets%20Section
https://www.perlmonks.org/?node=Code%20Catacombs
https://www.perlmonks.org/?node=Editor%20Requests
http://blogs.perl.org/
http://perlsphere.net/
http://perlweekly.com/
http://perl.com/
http://jobs.perl.org/
http://www.pm.org/
http://www.perl.org/
http://perldoc.pl/
https://metacpan.org/
http://cpan.perl.org/
https://www.perlmonks.org/?node_id=11133610
https://www.perlmonks.org/?node_id=11135548
https://www.perlmonks.org/?node=past%20polls

Of all zeros:
Of all ones: $M = ones(...);
Of random values between zero and one: $M = random(...);
Of Gaussian random values between zero and
one: $M = grandom(...);

Where each value is it's zero-based index along
the first dimension: $M = xvals(...);

Where each value is it's zero-based index along
the second dimension: $M = yvals(...);

Where each value is it's zero-based index along
the third dimension: $M = zvals(...);

Where each value is it's zero-based index along
dimension $d: $M = axisvals(..., $d);

Where each value is it's distance from a
specified centre:

$M = rvals(..., {Centre=>
[x,y,z,...]);

The following functions create piddles with dimensions taken from another piddle,
$M and distribute values between two endpoints ($min and $max) inclusively:

Linearly distributed values along the first
dimension:

$N = $M->xlinvals($min,
$max);

Linearly distributed values along the second
dimension:

$N = $M->ylinvals($min,
$max);

Linearly distributed values along the third
dimension:

$N = $M->zlinvals($min,
$max);

Logarithmically distributed values along the first
dimension:

$N = $M->xlogvals($min,
$max);

Logarithmically distributed values along the
second dimension:

$N = $M->ylogvals($min,
$max);

Logarithmically distributed values along the third
dimension:

$N = $M->zlogvals($min,
$max);

Co-ordinate Piddles

Finally the ndcoords utility function creates a piddle of co-ordinates for the
supplied arguments. It may be called in two ways:

$coords = ndcoords($M); - Take dimensions from another piddle
$coords = ndcoords(@dims); - Take dimensions from a Perl list

Piddle Conversion

A piddle can be converted into a different type using the datatype names as a
method upon the piddle. This returns the converted piddle as a new piddle. The
inplace method does not work with these conversion methods.

Operation Operator

Convert to byte datatype: $M->byte; or byte $M;
Convert to short datatype: $M->short; or short $M;
Convert to ushort datatype: $M->ushort; or ushort $M;
Convert to long datatype: $M->long; or long $M;
Convert to longlong datatype: $M->longlong; or longlong $M;
Convert to float datatype: $M->float; or float $M;
Convert to double datatype: $M->double; or double $M;

Obtaining Piddle Information

PDL provides a number of functions to obtain information about piddles:

Description Code
Return the number of elements: $M->nelem;
Return the number of dimensions: $M->ndims;
Return the length of dimension $d: $M->dim($d);
Return the length of all dimensions as a Perl list: $M->dims;
Return the length of all dimensions as a piddle: $M->shape;
Return the datatype of a piddle: $M->type;
Return general information about a piddle (datatype,
dimensions): $M->info;

Return the memory used by a piddle: $M-
>info("%M");

Indexing, Slicing and Views

Points To Note

PDL internally stores matrices in column major format. This affects the indexing
of piddle elements.

For example, take the following matrix $M:

 [
 [0 1 2]
 [3 4 5]
 [6 7 8]
]
[download]

In standard mathematical notation, the element at Mi,j will be i elements down and
j elements across, with the elements 0 and 3 at M1,1 and M2,1 respectively.

With PDL indexing, indexes start at zero, and the first two dimensions are
'swapped'. Therefore, the elements 0 and 3 are at PDL indices (0,0) and (0,1)
respectively.

https://www.perlmonks.org/?abspart=1;displaytype=displaycode;part=75;node_id=1214437

Views are References

PDL attempts to do as little work as possible in that it will try to avoid memory
copying of piddle values when it can. The most common operations where this is
the case is when taking piddle slices or views across a piddle matrix. The piddles
returned by these functions are views upon the original data, rather than copies, so
modifications to them will affect the original matrix.

Slicing

A common operation is to view only a subset of a piddle. This is called slicing.

As slicing is such a common operation, there is a module to implement a shorter
syntax for the slice method. This module is PDL::NiceSlice. This document only
uses this syntax.

A rectangular slice of a piddle is returned via using the default method on a piddle.
This takes up to n arguments, where n is the number of dimensions in the piddle.

Each argument must be one of the following forms:

"" An empty value returns the entire dimension.

n Return the value at index n into the dimension, keeping the dimension of
size one.

(n) Return the value at index n into the dimension, eliminating the entire
dimension.

n:m
Return the range of values from index n to index m inclusive in the
dimension. Negative indexes are indexed from the end of the dimension,
where -1 is the last element.

n:m:s
Return the range of values from index n to index m with step s inclusive in
the dimension. Negative indexes are indexed from the end of the
dimension, where -1 is the last element.

*n Insert a dummy dimension of size n.

The following examples operate on the matrix $M:

 [
 [0 1 2]
 [3 4 5]
 [6 7 8]
]
[download]

Description Command Result
Return the first column as a 1x3 matrix: $M->(0,); [[0][3][6]]
Return the first row as a 3x1 matrix: $M->(,0); [[0 1 2]]
Return the first row as a 3 element vector: $M->(,(0)); [0 1 2]

https://www.perlmonks.org/?displaytype=displaycode;abspart=1;node_id=1214437;part=99

Return the first and second column as a 2x3
matrix:

$M->(0:1); [[0 1] [3 4] [6
7]]

Return the first and third row as a 3x2
matrix:

$M->
(,0:-1:2);

[[0 1 2] [6 7 8]
]

Dicing

Occasionally it is required to extract non-contiguous regions along a dimension.
This is called dicing. The dice method accepts an array of indices for each
dimension, which do not have to be contiguous.

The following examples operate on the matrix $M:

 [
 [0 1 2]
 [3 4 5]
 [6 7 8]
]
[download]

Description Command Result
Return the first and third column as a 2x3
matrix:

$M-
>dice([0,2]);

[[0 2] [3 5]
[6 8]]

Return the first and third column and the first
and third row as a 2x2 matrix:

$M-
>dice([0,2],
[0,2]);

[[0 2] [6 8]
]

Which and Where Clauses

The other common operation to perform over a piddle is to apply a boolean
operation over the entire piddle elementwise. This is achieved in PDL with the
where method.

The where method accepts a single argument of a boolean operation. The element
is referred to within this argument with the same variable name as the piddle. The
values in the returned piddle are references to the values in the initial piddle.

In a similar mannor to which clauses outlined above, there is the where method.
The difference between these two methods is that which returns the values, while
where returns the indices.

This is best explained with examples over a matrix $M:

Description Return values Return indices
Obtain all positive values: $M->where($M > 0); which($M > 0);
Obtain all values equal to three: $M->where($M == 3); which($M == 3);
Obtain all values which are not zero: $M->where($M != 0); which($M != 0);

Note that there is also the which_both function. This function returns an array of

https://www.perlmonks.org/?displaytype=displaycode;abspart=1;node_id=1214437;part=112

two piddles. The first is a list of indices for which the boolean operation was true,
the second for which the result was false.

Again, as where clauses as so common PDL::NiceSlice has syntatic support for it
through the default method. This is acheived through an argument modifier, which
is appended to the single argument.

The modifiers are seperated from the original argument via a ; character, and the
following modifiers are supported:

Modifier Description
? The argument is no longer a slice, but rather a where clause
_ flatten the piddle to one dimension prior to the operation
- squeeze the piddle by flattening any dimensions of length one.
| sever the returned piddle into a copy, rather than a reference

Using this syntax, the following where commands are identical:

 $M->where($M > 3);
 $M->($M > 3;?);
[download]

View Modification

PDL contains many functions to modify the view of a piddle. These are outlined
below:

Description Code
Transpose a matrix/vector: $M->transpose;
Return the multidimensional diagonal over the supplied
dimensions:

$M-
>diagonal(@dims);

Remove any dimensions of length one: $M->squeeze;
Flatten to one dimension: $M->flat;
Merge the first $n dimensions into one: $M->clump($n);
Merge a list of dimensions into one: $M->clump(@dims);
Exchange the position of zero-indexed dimensions $i and
$j: $M->xchg($i, $j);

Move the position of zero-indexed dimension $d to index
$i: $M->mv($d, $i);

Reorder the index of all dimensions: $M-
>reorder(@dims);

Concatenate piddles of the same dimensions into a single
piddle of rank n+1: cat($M, $N, ...);

Split a single piddle into an array of piddles across the last
dimension:

($M, $N, ...) =
dog($P);

Rotate elements with wrap across the first dimension: $M->rotate($n);

https://www.perlmonks.org/?displaytype=displaycode;abspart=1;node_id=1214437;part=140

Given a vector $v return a matrix, where each column is of
length $len, with step $step over the entire vector:

$M->lags($dim,
$step, $len);

Normalise a vector to unit length: $M->norm;
Destructively reshape a matrix to n dimensions, where n is
the number of arguments and each argument is the length of
each dimension. Any additional values are discarded and
any missing values are set to zero:

$M-
>resize(@dims);

Append piddle $N to piddle $M across the first dimension: $M->append($N);
Append piddle $N to piddle $M across the dimension with
index $dim:

$M->glue($dim,
$N);

Matrix Multiplication

PDL supports four main matrix multiplication methods between two piddles of
compatible dimensions. These are:

Operation Code
Dot product: $M x $N;
Inner product: $M->inner($N);
Outer product: $M->outer($N);
Cross product: $M->crossp($N);

As the x operator is overloaded to be the dot product, it can also be used to
multiply vectors, matrices and scalars.

Operation Code
Row x matrix = row $r x $M;
Matrix x column = column $M x $c;
Matrix x scalar = matrix $M x 3;
Row x column = scalar $r x $c;
Column x row = matrix $c x $r;

Arithmetic Operations

PDL supports a number of arithmetic operations, both elementwise, over an entire
matrix and along the first dimension. Double precision variants are prefixed with
d.

Operation Elementwise Over entire
PDL Over 1st Dimention

Addition: $M + $N; $M->sum;; $M-
>dsum; $M->sumover;; $M->dsumover;

Subtraction: $M - $N;

Product: $M * $N; $M->prod;; $M-
>dprod;

$M->prodover;; $M-
>dprodover;

Division: $M / $N;

Modulo: $M % $N;
Raise to the
power: $M ** $N;

Cumulative
Addition:

$M->cumusumover;; $M-
>dcumusumover;

Cumulative
Product:

$M->cumuprodover;; $M-
>dcumuprodover;

Comparison Operations:

PDL supports a number of different elementwise comparison functions between
matrices of the same shape.

Operation Elementwise
Equal to: $M == $N;
Not equal to: $M != $N;
Greater than: $M > $N;
Greater than or equal to: $M >= $N;
Less than: $M < $N;
Less than or equal to: $M <= $N;
Compare (spaceship): $M <=> $N;

Binary Operations

PDL also allows binary operations to occur over piddles. PDL will convert any
real number datatype piddles (float, double) to an integer before performing the
operation.

Operation Elementwise Over entire PDL Over 1st Dimention
Binary and: $M & $N; $M->band; $M->bandover;
Binary or: $M | $N; $M->bor; $M->borover;
Binary xor: $M ^ $N;
Binary not: ~ $M; or $M->bitnot;
Bit shift left: $M << $N;
Bit shift right: $M >> $N;
Logical and: $M->and; $M->andover;
Logical or: $M->or; $M->orover;
Logical not: ! $M; or $M->not;

Trigonometric Functions

These PDL functions operate in units of radians elementwise over a piddle.

Operation Elementwise

Sine: $M->sin;
Cosine: $M->cos;
Tangent: $M->tan;
Arcsine: $M->asin;
Arccosine: $M->acos;
Arctangent: $M->atan;
Hyperbolic sine: $M->sinh;
Hyperbolic cosine: $M->cosh;
Hyperbolic tangent: $M->tanh;
Hyperbolic arcsine: $M->asinh;
Hyperbolic arccosine: $M->acosh;
Hyperbolic arctangent: $M->atanh;

Statistical Functions

PDL contains many methods to obtain statistics from piddles. Double precision
variants are prefixed with d.

Operation Over entire PDL Over 1st
Dimention

Minimum value: $M->min; $M->minover;
Maximum value: $M->max; $M->maxover;
Minimum and maximum value: $M->minmax; $M->minmaxover;

Minimum value (as indicies):
$M-
>minover_ind;;
$M-
>minover_n_ind;

Maximum value (as indicies):
$M-
>maxover_ind;;
$M-
>maxover_n_ind;

Mean: $M->avg;; $M-
>davg;

$M->avgover;;
$M->davgover;

Median: $M->median;; $M-
>oddmedian;

$M->medover;;
$M->oddmedover;

Mode: $M->mode; $M->modeover;

Percentile: $M->pct;; $M-
>oddpct;

$M->pctover;;
$M->oddpctover;

Elementwise error function: $M->erf;
Elementwise complement of the error
function: $M->erfc;

Elemntwise inverse of the error function: $M->erfi;
Calculate histogram of $data, with
specified $minimum bin value, bin $step
size and $count bins:

histogram($data,
$step, $min,
$count);

Calculate weighted histogram of $data

with weights $weights, specified
$minimum bin value, bin $step size and
$count bins:

whistogram($data,
$weights, $step,
$min, $count);

Various statistics: $M->stats; $M->statsover;

The 'various statistics' described above are returned as a Perl array of the
following items:

mean
population RMS deviation from the mean
median
minimum
maximum
average absolute deviation
RMS deviation from the mean

Zero Detection, Sorting, Unique Element Extraction

Operation Over entire PDL Over 1st Dimention
Any zero values: $M->zcheck; $M->zcover;
Any non-zero values: $M->any;
All non-zero values: $M->all;
Sort (returning values): $M->qsort; $M->qsortvec;
Sort (returning indices): $M->qsorti; $M->qsortveci;
Unique elements: $M->uniq; $M->uniqvec;
Unique elements (returning indices): $M->uniqind;

Rounding and Clipping of Values

PDL contains multiple methods to round and clip values. These all opererate
elementwise over a piddle.

Operation Elementwise
Round down to the nearest integer: $M->floor;
Round up to the nearest integer: $M->ceil;
'Round half to even' to the nearest integer: $M->rint;
Clamp values to a maximum of $max: $M->hclip($max);
Clamp values to a minimum of $min: $M->lclip($min);
Clamp values between a minimum and maximum: $M->clip($min, $max);

Set Operations

PDL contains methods to treat piddles as sets of values. Mathematically, a set
cannot contain the same value twice, but if this happens to be the case with the
piddles, PDL takes care of this for you.

Operation Code
Obtain a mask piddle for values from $N
contained within $M: $M->in($N);

Obtain the values of the intersection of the sets
$M and $N:

setops($M, 'AND', $N); or
intersect($M, $N);

Obtain the values of the union of the sets $M and
$N: setops($M, 'OR', $N);

Obtain the values which are in sets $M or $N, but
not both (union - intersection): setops($M, 'XOR', $N);

Kernel Convolusion

PDL supports kernel convolution across multiple dimensions:

Description Code
1-dimensional convolution of matrix $M with kernel
$K across first dimension (edges wrap around): $M->conv1d($K);

1-dimensional convolution of matrix $M with kernel
$K across first dimension (edges reflect):

$M->conv1d($K,
{Boundary =>
'reflect');

2-dimensional convolution of matrix $M with kernel
$K (edges wrap around): $M->conv2d($K);

2-dimensional convolution of matrix $M with kernel
$K (edges reflect):

$M->conv2d($K,
{Boundary =>
'reflect');

2-dimensional convolution of matrix $M with kernel
$K (edges truncate):

$M->conv2d($K,
{Boundary =>
'truncate');

2-dimensional convolution of matrix $M with kernel
$K (edges repeat):

$M->conv2d($K,
{Boundary =>
'replicate');

Miscellaneous Mathematical Methods

Here is all the other stuff which doesn't fit anywhere else:

Description Code
Elementwise square root: $M->sqrt;
Elementwise absolute value: $M->abs;
Elementwise natural exponential: $M->exp;
Elementwise natural logarithm: $M->log;
Elementwise base 10 logarithm: $M->log10;
Elementwise raise to the power $i: ipow($M, $i);

| Comment on PDL QuickRef | Select or Download Code

Replies are listed 'Best First'.

https://www.perlmonks.org/?node_id=3333;parent=1214437
https://www.perlmonks.org/?displaytype=selectcode;node_id=1214437
https://www.perlmonks.org/?node_id=1214437;displaytype=displaycode

