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1.   Relating the location and scale parameters 
 
The Cauchy distribution has no finite moments, i.e., mean, variance etc, but it can be 
normalized and that's it. When its parameters correspond to a symmetric shape, the “sort-of-
mean” is found by symmetry, and since the Cauchy has no (finite) variance, that can't be used 
to match to a Gaussian either. However, one can compare the Cauchy to a Gaussian such that 
the modes (peaks) are the same (1/π in the example shown Figure 1). 
 

 
Figure 1: Solid red curve is a Cauchy density function with z0=10 and b=1. The dashed 
curve is a Gaussian with the same peak as the Gaussian (1/π) with mean=10 and variance 
= π /2. The Cauchy has heavier tails. 
 
The terminology uses the b and z0 parameters to define the Cauchy density function: 
 

 
 
Given a Cauchy (or Lorentzian) is integrable, you can define probabilities or quantile ranges 
that correspond to a certain probability. Hence, you can find the relationship between the 
Cauchy scale parameter "b" and the sigma of a Gaussian such that they contain the same mass 
(probability) within some quantile (or confidence) interval of interest. For a given probability 
p, the quantile functions for the Gaussian (zg) and Cauchy (zc) are: 
 

 



Therefore, if you want the Cauchy parameters that would give the same p-confidence interval 
as you would get from a Gaussian, simply equate the above. Not sure why anyone would want 
to do this in practice. 
 
2.   The sampling distribution of the mean for a Cauchy population 
 
There's something we usually take for granted but never think about deeply – basically the 
distribution of the mean of a set of N independent measurements drawn from a population with 
finite σ will have standard-deviation "σ/√N". As N increases, this distribution approaches 
"normality" (the Central Limit Theorem). 
 
So, regardless of the underlying population, it only needs to have a finite variance for the σ/√N 
rule to hold. Therefore, if one is drawing samples from a Cauchy population and naively 
computes the sample mean and σ, they should never see 1/√N behavior! This is because the 
Cauchy distribution has no finite variance. In fact, there will be diminishing returns as N 
increases because more of the Cauchy tails will be sampled. The latter will inflate the sample σ 
more than what can be compensated by any √N diminution. 
 
Figure 2 compares the standard deviation of the sample mean for sample sizes N = 1,2,3…100 
computed from 10000 simulated samples for each N drawn from a Gaussian (normal), 
Uniform, and Cauchy population. This is a log-log plot so that "σ/√N" behavior will be 
represented by a straight line with slope = -1/2. As expected, there is no 1/√N reduction in the 
mean for any sample drawn from a Cauchy population. 
 

 
Figure 2: standard-deviation of the sample mean for sample sizes N = 1,2,3…100 drawn 
from three popular distributions. All estimates are scaled to have standard-deviation = 1 
at sample size N = 1. 


