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2

• The probability of finding a source at some 2D position x, y within an area ΔxΔy is given by 𝑓 𝑥, 𝑦 ∆𝑥∆𝑦 
where 𝑓 𝑥, 𝑦  is its bivariate probability density function (PDF).

• Suppose we have two generic bivariate PDFs corresponding to two nearby sources: 𝑓! 𝑥, 𝑦 	and 𝑓" 𝑥, 𝑦 ,  
each separated by different amounts. These can be pictured as follows:

• Likelihood of finding both sources at some x, y within a region ΔxΔy is  ∝ 𝑓! 𝑥, 𝑦 𝑓" 𝑥, 𝑦 ∆𝑥∆𝑦.
• We can define a quantitative measure for both sources to have the same PDF (i.e., occupy the same region):

𝐷 =# 𝑓! 𝑥, 𝑦 𝑓" 𝑥, 𝑦 !/" 𝑑𝑥 𝑑𝑦

𝑓! 𝑥, 𝑦  

𝑓" 𝑥, 𝑦  

𝑓! 𝑥, 𝑦  

𝑓" 𝑥, 𝑦  

𝐷 ≈ 0.3 𝐷 ≈ 0.8
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• This metric satisfies 0 ⩽ D ⩽ 1 where smaller values of D imply the PDFs are more dissimilar.
• Sometimes referred to as the dissimilarity metric (Bhattacharyya, 1946).

• In particular, if 𝑓! 𝑥, 𝑦 	and 𝑓" 𝑥, 𝑦 	are two bivariate normal distributions:

𝑓! 𝑥, 𝑦 	~	𝑁 𝜇!, 𝐶! 	 and	 𝑓" 𝑥, 𝑦 	~	𝑁 𝜇", 𝐶" 	 where

𝜇! =
𝑥!
𝑦! , 	 𝐶!=

𝜎#!" 𝜎#!$!"

𝜎#!$!" 𝜎$!"
	 and	 𝜇" =

𝑥"
𝑦" , 	 𝐶"=

𝜎#"" 𝜎#"$""

𝜎#"$"" 𝜎$""

• Their [dis]similarity metric can be written: 

• Two terms: (1) measure of [dis]similarity in “size” or spread
                            (2) measure of [dis]similarity in separation of means (source centroids)

𝐷 =
2 𝑑𝑒𝑡 𝐶! 𝑑𝑒𝑡 𝐶" !/$

𝑑𝑒𝑡 𝐶! + 𝐶" !/" 	exp −
1
4
𝑥" − 𝑥! 𝑦" − 𝑦! 𝐶! + 𝐶" %! 𝑥" − 𝑥!

𝑦" − 𝑦!
(1) (2)



• For our application, we are exclusively interested in the second term of D.
• This term is maximal when the argument of the exponential is minimal.
• Defining Δx = x2 – x1 and Δy = y2 – y1, the test statistic to minimize is:

• Expanding the covariance matrices and centroid-difference vectors,

• If all covariances = 0:

Probabilistic Source (centroid) Matching: test statistic  
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𝑆 = ∆𝑥 ∆𝑦 𝐶! + 𝐶" %! ∆𝑥
∆𝑦

𝑆 =
𝜎&!" + 𝜎&"" ∆𝑥" + 𝜎'!" + 𝜎'"" ∆𝑦" − 2 𝜎'!&!" + 𝜎'"&"" ∆𝑥∆𝑦

𝜎'!" + 𝜎'"" 𝜎&!" + 𝜎&"" − 𝜎'!&!" + 𝜎'"&"" "

𝑆 =
∆𝑥"

𝜎'!" + 𝜎'""
+

∆𝑦"

𝜎&!" + 𝜎&""



• Below is a schematic of three centroids and their error ellipses, i.e., projections of their iso-probability-
density contours in the x, y plane.

• The variances along the principal axes of ellipse #2 are given by solving for eigenvalues of covariance matrix:

• The S metric can then be recast in terms of σA and σB.
• In practice, it’s easier to work with projected σx , σy  values.

Quiz: which position (centroid 2 or centroid 3) is the “best”
             or most likely match to centroid 1?

Principal axes representation and a quiz  
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𝜎(" =
1
2
𝜎'"" + 𝜎&"" + 𝜎'"" − 𝜎&""

" + 4𝜎'"&"$
!/"

𝜎)" =
1
2 𝜎'"" + 𝜎&"" − 𝜎'"" − 𝜎&""

" + 4𝜎'"&"$
!/"

1

2

3



• If the errors in the centroids are normally distributed, the test statistic S will follow the null probability density 
distribution (defining the null hypothesis H0):

• H0: two centroids are associated with the same source OR are consistent within random measurement errors.

• Probability of obtaining at least the value S under H0 by chance:

• If Prob(> S) < Pcrit , we reject H0 and declare the pair of centroids probably unassociated.
      => Their separation is very unlikely to be due to random measurement errors alone.

• Alternatively, we can invert the above and find the maximum tolerable value Smax above which to reject H0:

• For example, if Pcrit = 0.05, Smax  ≃ 6.

Null hypothesis and distribution for S 
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𝑃𝐷𝐹 𝑆 	~	𝜒*" =
1
2exp −

𝑆
2 	 for	𝜈 = 2	degrees	of	freedom

𝑃𝑟𝑜𝑏 > 𝑆 = M
+

,
𝜒*-"" 𝑑𝑆 	= exp −

𝑆
2
.	

𝑆./' = −2	log 𝑃0123 	



• We first match source positions between two samples within a coarse radius R tuned using some prior 
knowledge of their uncertainties, e.g.,

      R ≃ 5 𝜎#!" + 𝜎$!" + 𝜎#"" + 𝜎$""
!/"

 
      where angled brackets denote averages.

• For each input seed position (e.g., blue centroid on slide 5), compute statistic S for each matching candidate 
position and its significance Prob(> S). Then threshold against some Pcrit (slide 6).

• Alternatively (simpler), threshold the S values against some Smax value corresponding to Pcrit (slide 6).

• For multiple candidates, most likely match is the one with smallest S (largest Prob). However, see next slide.

Overview of process
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1. For multiple matching candidates with S < Smax and little dynamic range between their S values, we can 
complement the matching with a flux-match, however, beware of intrinsic source variability.

2. Are the prior positional uncertainties 𝜎# 	, 𝜎$ and their covariances plausible? It is advised to cross-check 
them by computing sample (co)variances, then recalibrating if necessary.

3. Can normality of the sample positional errors be justified? I.e., are the marginal PDFs along each axis 
approximately normal (aka Gaussian)? Repeated measurements of the same source can be used here.

4. Does a simple Euclidean distance match using S = Δx2 + Δy2 perform better or give similar results (in terms of 
completeness & reliability) than the S defined on slide 4 that includes uncertainty priors?
Ø If so, either the priors are implausible (point 2 above), normality is not justified (point 3 above), or prior 

uncertainties are indeed plausible but negligible for both samples.

5. Homework: how would one modify the test statistic S and null PDF on slide 6 to account for chance (hence 
false) associations due to high source density? There’s more to it than just measurement error alone. 

Checks and other considerations
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