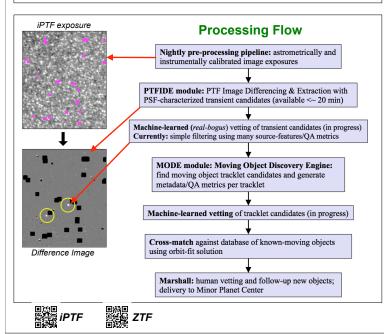


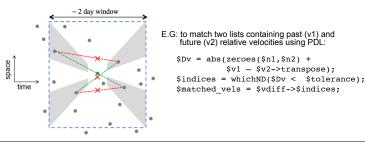
A New Ultra-fast Moving Object Discovery Engine for *iPTF*, *ZTF* and beyond

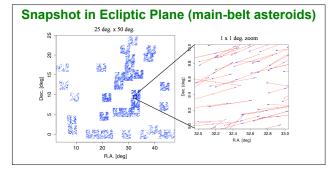
Frank Masci¹, Adam Waszczak², Russ Laher¹, James Bauer^{1,3}, Thomas Prince⁴, George Helou¹, & Shrinivas Kulkarni⁴


Jet Propulsion Laboratory

fmasci@caltech.edu

Goals / Overview


- A goal of the *intermediate* Palomar Transient Factory (iPTF; currently in progress), and its successor survey -- the Zwicky Transient Facility (ZTF; planned for 2017), is the discovery of near-Earth objects (NEOs).
- This will enhance our understanding of poorly-studied subsets of NEOs and enable a more complete census of the asteroid and comet population.
- We have developed an efficient, industrial-strength discovery pipeline: the "Moving Object Discovery Engine" (MODE).
- MODE utilizes transient candidates extracted from the nightly imagesubtraction pipeline (PTFIDE: PTF Image-Differencing & Extraction).
- The use of difference-image extractions gives us an enormous advantage: the suppression of static (inertial) sources that would otherwise confuse and confound the source-linking process used to discover moving objects.
- This is unlike existing NEO surveys that attempt to remove stationary sources using prior catalog matching across image epochs. This can be expensive and ambiguous, leading to missed tracklets.
- Difference imaging has huge returns in the galactic plane and regions with complex backgrounds (see example below).
- MODE is optimized to discover non-streaking objects in single exposures, i.e., that move slower than the typical FWHM in a single exposure; for iPTF, this speed is <~ 3 arcsec / min. This is because transient candidates from image-subtractions are detected and characterized using PSF-fitting.
- The iPTF nightly processing pipeline also includes a streak-detection module to find "fast" moving objects on a per-image-exposure basis. This module is not part of the MODE design.
- MODE can report moving-object candidates within a few minutes from a bulk run of two-night's worth of iPTF data – consisting of typically a few thousand exposure images with several-thousand transient candidates extracted from difference images.
- MODE is normally executed on a single machine with 12 x 2.4 GHz Intel
- Xeon® processor cores. More cores, the better (of course).
- iPTF continues to serve as a testbed, paving the way to ZTF and beyond.



Tracklet Finding Algorithm and Implementation

A challenging computer science problem that makes using of tree-search algorithms: *kd-trees* and *quad-tree* partitioning on the sky. Basic idea is from Waszczak et al., 2013, MNRAS, 433, 3115 then optimized

- Implemented exclusively in Perl, utilizing methods from the object-oriented Perl Data Language (PDL) library with functions implemented in C/C++.
- PDL library provides a high level of parallelism for computations: multithreaded vector/matrix methods optimized for multi-core architectures.
- Two step process to find tracklet candidates:
 - Find all triplet-transient-tracklets (TTTs) within min/max velocity cone centered on every transient by matching relative velocities & fluxes.
 - Bin the 2D velocity vectors and merge all TTTs potentially belonging to same object to build final tracklets. See Masci et al. 2015 (in prep.)

Performance

We explored the recovery fraction (completeness) and reliability of MODE-detected tracklets from data spanning three nights over a 1500 deg² region.
Applied filters to extracted transients: S/N > 5, > 2" from bright static sources
Truth set: from predicted occurrences of known asteroids in iPTF exposures
Overall, 3437 candidate tracklets with ≥ 4 detections/tracklet were reported by MODE to R_{PTF} ~ 20 from this run. Table below shows cumulative statistics

	400	# Recovered (matched to truth)	Reliability %	Completeness %	R mag limit
	300	43	100	74.13	16
لى ا	Number 200	143	100	82.66	17
		529	100	88.46	18
تنکسی	100	1509	100	93.09	19
N	0 -	3359	97.73	88.09	20

The authors would like to acknowledge funding from the JPL Research and Technology Developmer (R&TD) program and the National Science Foundation under grant no. AST—144034. This work made use of the Perl Data Language (PDL) and is available at http://pdl.perl.org.